NullVector - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Tensor[NullVector] - construct a null vector from a solder form and a rank 1 spinor

Calling Sequences

     NullVector(, )

     NullVector( , , )

Parameters

            - a spin-tensor defining a solder form on a 4-dimensional spacetime

          - rank 1 spinors

 

Description

Examples

See Also

Description

• 

Let be a metric on a 4-dimensional manifold with signature A null vector satisfies

• 

Let  be a solder form for the metricthat is,  is a rank 3 spin-tensor such that  The NullVector command accepts, as its first argument, a solder form with either covariant or contravariant tensor and spinor indices.

• 

With two arguments, the NullVector command returns the real vector with components

• With three arguments, the NullVector command returns the (complex) vector with components

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form NullVector(...) only after executing the commands with(DifferentialGeometry); with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-NullVector.

Examples

 

Example 1.

First create the spinor bundle  with spacetime coordinates  and fiber coordinates .

(2.1)

 

Define a spacetime metric  on  with signature .

M > 

(2.2)

 

Define an orthonormal tetrad  on with respect to the metric Use the command SolderForm to create a solder form .

M > 

(2.3)
M > 

(2.4)

 

Define rank 1 spinors and

M > 

(2.5)
M > 

(2.6)
M > 

(2.7)

 

Use the command NullVector to find the corrresponding null vectors .

M > 

(2.8)
M > 

(2.9)
M > 

(2.10)

 

We can use the command TensorInnerProduct to check that the vectors  are indeed null vectors.

M > 

(2.11)
M > 

(2.12)
M > 

(2.13)

See Also

DifferentialGeometry, Tensor, NullTetrad,  PrincipalNullDirections, SolderForm,   TensorInnerProduct


Download Help Document