IsRegularPGroup - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Group Theory : IsRegularPGroup

GroupTheory

  

IsRegularPGroup

  

determine whether a group is regular a p-group, for some prime p

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

IsRegularPGroup( G )

Parameters

G

-

: PermutationGroup : a p-group for some prime p.

Description

• 

A finite p-group G, where p is a prime, is said to be regular if, for any elements a and b in G, and for any positive integer k, we have apk·bpk=a·bpk·spk, for some element s in Agemo1,H, where H is the derived subgroup of the subgroup of G generated by a and b.

• 

For 2-groups, regularity is equivalent to commutativity.

• 

Regularity as a p-group should not be confused with regularity as a permutation group. To test for regularity as a permutation group, see GroupTheory[IsRegular].

• 

The IsRegularPGroup( G ) command returns true if the permutation group G is a regular p-group, for a prime number p, and returns false if it is not.

Examples

withGroupTheory:

IsRegularPGroupSL4,3

false

(1)

For 2-groups, regularity is equivalent to commutativity.

IsRegularPGroupSmallGroup4,1

true

(2)

IsRegularPGroupSmallGroup4,2

true

(3)

IsRegularPGroupDihedralGroup32

false

(4)

SearchSmallGroupspgroupprime=2,abelian=false,regularpgroup=true

SearchSmallGroupspgroupprime=2,abelian=true,regularpgroup=false

The Sylow 2-subgroup of S4 is a dihedral group of order 8, so is non-abelian.

IsRegularPGroupSylowSubgroup2,Symm4

false

(5)

IsRegularPGroupSylowSubgroup7,Symm49

false

(6)

Every group of order p3, for odd primes p, is regular because they all have nilpotency class at most two.

LseqSmallGroup73,k,k=1..NumGroups73:

andmapIsRegularPGroup,L

true

(7)

For p=3, there are irregular groups of order 81.

Reg,IrrselectremoveIsRegularPGroup,AllSmallGroups81:

nopsReg,nopsIrr

11,4

(8)

However, for 3<p, the groups of order p4 are all regular.

LseqSmallGroup74&comma;k&comma;k=1..NumGroups74&colon;

andmapIsRegularPGroup&comma;L

true

(9)

Direct products of regular p-groups are regular.

GDirectProductSearchSmallGroupsorder=125&comma;regularpgroup&comma;form=permgroup

G&lang;a permutation group on 625 letters with 12 generators&rang;

(10)

IsRegularPGroupG

true

(11)

Compatibility

• 

The GroupTheory[IsRegularPGroup] command was introduced in Maple 2021.

• 

For more information on Maple 2021 changes, see Updates in Maple 2021.

See Also

GroupTheory[AllSmallGroups]

GroupTheory[DihedralGroup]

GroupTheory[IsPGroup]

GroupTheory[IsRegular]

GroupTheory[NumGroups]

GroupTheory[SearchSmallGroups]

GroupTheory[SmallGroup]

GroupTheory[SpecialLinearGroup]

GroupTheory[SylowSubgroup]

GroupTheory[SymmetricGroup]

 


Download Help Document