 CodeGeneration - Maple Programming Help

# Online Help

###### All Products    Maple    MapleSim

Home : Support : Online Help : Programming : Input and Output : Translation : CodeGeneration/Matlab

CodeGeneration

 Matlab
 translate Maple code to MATLAB(R) code

 Calling Sequence Matlab(x, cgopts)

Parameters

 x - expression, list, rtable, procedure or module cgopts - (optional) one or more CodeGeneration options

Description

 • The Matlab command translates Maple code to MATLAB® code.
 - If the parameter x is an algebraic expression, then a MATLAB® statement assigning the expression to a variable is generated.
 - If x is a list, rtable or Maple Array of algebraic expressions, then a sequence of MATLAB® statements assigning the elements to a MATLAB® array is produced.
 - If x is a list of equations $\mathrm{nm}=\mathrm{expr}$ where $\mathrm{nm}$ is a name and $\mathrm{expr}$ is an algebraic expression, this is understood to mean a sequence of assignment statements.  In this case, the equivalent sequence of MATLAB® assignment statements is generated.
 - If x is a procedure, then a MATLAB® module is generated containing a function equivalent to the procedure.
 - If x is a module, then the closest equivalent MATLAB® code is generated, as described on the MatlabDetails help page.
 • The parameter cgopts may include one or more CodeGeneration options, as described in CodeGenerationOptions.
 • For more information about how the CodeGeneration package translates Maple code to other languages, see Translation Details. For more information about translation to MATLAB® in particular, see MatlabDetails.

Examples

For a description of the options used in the following examples, see CodeGenerationOptions.

 > $\mathrm{with}\left(\mathrm{CodeGeneration}\right):$

Translate a simple expression and assign to the name w'' in the target code.

 > $\mathrm{Matlab}\left(x+yz-2xz,\mathrm{resultname}="w"\right)$
 w = -2 * x * z + y * z + x;

Translate a list and assign to an array with name w'' in the target code.

 > $\mathrm{Matlab}\left(\left[\left[x,2y\right],\left[5,z\right]\right],\mathrm{resultname}="w"\right)$
 w = [x 2 * y; 5 z;];

Translate a computation sequence.  Optimize the input first.

 > $\mathrm{cs}≔\left[s=1.0+x,t=\mathrm{ln}\left(s\right)\mathrm{exp}\left(-x\right),r=\mathrm{exp}\left(-x\right)+xt\right]:$
 > $\mathrm{Matlab}\left(\mathrm{cs},\mathrm{optimize}\right)$
 s = 0.10e1 + x; t1 = log(s); t2 = exp(-x); t = t2 * t1; r = x * t + t2;

Declare that x is a float and y is an integer.  Return the result in a string.

 > $s≔\mathrm{Matlab}\left(x+y+1,\mathrm{declare}=\left[x::\mathrm{float},y::'\mathrm{integer}'\right],\mathrm{output}=\mathrm{string}\right)$
 ${s}{≔}{"cg = x + y + 0.1e1;"}$ (1)

Translate a procedure.  Assume that all untyped variables have type integer.

 > f := proc(x, y, z) return x*y-y*z+x*z; end proc:
 > $\mathrm{Matlab}\left(f,\mathrm{defaulttype}=\mathrm{integer}\right)$
 function freturn = f(x, y, z)   freturn = y * x - y * z + x * z;

Translate a procedure containing an implicit return.  A new variable is created to hold the return value.

 > f := proc(n)   local x, i;   x := 0.0;   for i to n do     x := x + i;   end do; end proc:
 > $\mathrm{Matlab}\left(f\right)$
 function freturn = f(n)   x = 0.0e0;   for i = 1:n     x = x + i;     cgret = x;   end   freturn = cgret;

Translate a procedure accepting an Array as a parameter.  Note that the indices are renumbered so that the MATLAB® array starts at index 1.

 > f := proc(x::Array(numeric, 5..7))   return x+x+x; end proc:
 > $\mathrm{Matlab}\left(f\right)$
 function freturn = f(x)   freturn = x(1) + x(2) + x(3);

Translate a module with one exported and one local procedure.

 > m := module() export p; local q;     p := proc(x,y) if y>0 then trunc(x); else ceil(x); end if; end proc:     q := proc(x) sin(x)^2; end proc: end module:
 > $\mathrm{Matlab}\left(m,\mathrm{resultname}=\mathrm{t0}\right)$
 % m/p.m: function preturn = p(x, y)   if (0 < y)     preturn = fix(x);   else     preturn = ceil(x);   end % m/private/q.m: function qreturn = q(x)   qreturn = sin(x) ^ 2;

Translate a linear combination of hyperbolic trigonometric functions.

 > $\mathrm{Matlab}\left(2\mathrm{cosh}\left(x\right)-7\mathrm{tanh}\left(x\right)\right)$
 cg0 = 0.2e1 * cosh(x) - 0.7e1 * tanh(x);

Translate a procedure with no return value containing a printf statement.

 > f := proc(a::integer, p::integer)   printf("The integer remainder of %d divided by %d is: %d\n", a, p, irem(a, p)); end proc:
 > $\mathrm{Matlab}\left(f\right)$
 function freturn = f(a, p)   disp(sprintf('The integer remainder of %d divided by %d is: %d ',a,p,mod(a, p)));

 See Also