DifferentialGeometry/LieAlgebras/Query/RootSpaceDecomposition - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/LieAlgebras/Query/RootSpaceDecomposition

Query[RootSpaceDecomposition] - check that a table of roots and root spaces gives a root space decomposition for a semi-simple Lie algebra with respect to a given Cartan subalgebra

Calling Sequences

     Query(CSA, RSD, RootSpaceDecomposition)

Parameters

     CSA     - a list of vectors in a Lie algebra, defining the Cartan subalgebra of a semi-simple Lie algebra

      RSD     - a table, defining a root space decomposition of a Lie algebra

      options - the keyword argument output = "root"

      

 

Description

Examples

Description

• 

 Let g be a semi-simple Lie algebra and h a Cartan subalgebra.  Let h1, h2, ... ,  hm  be a basis for 𝔥 . The linear transformations adhi are simultaneously diagonalizable over C -- if  x g is a common eigenvector for all these transformations, then adhix = hi , x =  αi  x . The m-tuples α = α1, α2, ... , αm ∈ ℂm are called the roots Δ of 𝔤  with respect to the Cartan subalgebra 𝔥 . The eigenspace decomposition 𝔤 = 𝔥  α  Δ  Rα  is called the root space decomposition of g with respect to h.  

• 

For each root α and corresponding root space x, this query checks that hi , x = αi  x .  It also checks that the span of the Cartan subalgebra and the root spaces is the full Lie algebra 𝔤 .

• 

With output = "root", this query will return the root α  if the equations hi , x =  αi  x fail.

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

Check the root space decomposition for a 10-dimensional Lie algebra.

 

Here is the Lie algebra data structure.

LD_DGLieAlgebra,alg,10,1,2,3,1,1,3,2,2,1,3,4,2,1,4,3,1,1,5,6,1,1,6,5,2,1,6,7,2,1,7,6,1,1,8,9,1,1,9,8,2,1,9,10,2,1,10,9,1,2,3,1,1,2,5,8,2,2,6,9,1,2,8,5,2,2,9,6,1,3,4,1,1,3,5,9,1,3,6,8,2,3,6,10,2,3,7,9,1,3,8,6,1,3,9,5,2,3,9,7,2,3,10,6,1,4,6,9,1,4,7,10,2,4,9,6,1,4,10,7,2,5,6,1,1,5,8,2,2,5,9,3,1,6,7,1,1,6,8,3,1,6,9,2,2,6,9,4,2,6,10,3,1,7,9,3,1,7,10,4,2,8,9,1,1,9,10,1,1

LD:=e1,e2=e3,e1,e3=2e42e2,e1,e4=e3,e1,e5=e6,e1,e6=2e72e5,e1,e7=e6,e1,e8=e9,e1,e9=2e102e8,e1,e10=e9,e2,e3=e1,e2,e5=2e8,e2,e6=e9,e2,e8=2e5,e2,e9=e6,e3,e4=e1,e3,e5=e9,e3,e6=2e10+2e8,e3,e7=e9,e3,e8=e6,e3,e9=2e72e5,e3,e10=e6,e4,e6=e9,e4,e7=2e10,e4,e9=e6,e4,e10=2e7,e5,e6=e1,e5,e8=2e2,e5,e9=e3,e6,e7=e1,e6,e8=e3,e6,e9=2e4+2e2,e6,e10=e3,e7,e9=e3,e7,e10=2e4,e8,e9=e1,e9,e10=e1

(2.1)

 

Initialize the Lie algebra.

alg > 

DGsetupLD

Lie algebra: alg

(2.2)

 

Define a subalgebra and check that it is a Cartan subalgebra.

alg > 

CSAevalDGe1,e8+e10

CSA:=e1,e8+e10

(2.3)

QueryCSA,CartanSubalgebra

true

(2.4)

 

Define a table of roots and root spaces and check that it gives a root space decomposition.

alg > 

RSDmapevalDG,table2I,0=e8Ie9e10,2I,2I=e2Ie3e4Ie5e6+Ie7,2I,2I=e2+Ie3e4Ie5+e6+Ie7,0,2I=e2+e4Ie5Ie7,2I,0=e8+Ie9e10,2I,2I=e2Ie3e4+Ie5+e6Ie7,0,2I=e2+e4+Ie5+Ie7,2I,2I=e2+Ie3e4+Ie5e6Ie7

RSD:=table0,2I=e2+e4Ie5Ie7,2I,2I=e2+Ie3e4Ie5+e6+Ie7,2I,2I=e2Ie3e4Ie5e6+Ie7,2I,0=e8Ie9e10,2I,2I=e2+Ie3e4+Ie5e6Ie7,2I,2I=e2Ie3e4+Ie5+e6Ie7,2I,0=e8+Ie9e10,0,2I=e2+e4+Ie5+Ie7

(2.5)
alg > 

QueryCSA,RSD,RootSpaceDecomposition

true

(2.6)

See Also

DifferentialGeometry

CartanSubalgebra

LieAlgebras

Query

Query[CartanSubalgebra]

RootSpaceDecomposition