SubalgebraNormalizer - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LieAlgebras[SubalgebraNormalizer] - find the normalizer of a subalgebra

Calling Sequences

     SubalgebraNormalizer(h, k)

Parameters

     h         - a list of vectors defining a subalgebra  in a Lie algebra 

     k         - (optional) a list of vectors defining a subalgebra  of  containing the subalgebra

 

Description

Examples

Description

• 

Let be a Lie algebra and let be subalgebras.The normalizer  of  in  is the largest subalgebra  of  which contains  as an ideal. The normalizer of  always contains  itself.

• 

SubalgebraNormalizer(h, k) calculates the normalizer of  in the subalgebra . If the second argument  is not specified, then the default is and the normalizer of in is calculated.

• 

A list of vectors defining a basis for the normalizer of  is returned.

• 

The command SubalgebraNormalizer is part of the DifferentialGeometry:-LieAlgebras package.  It can be used in the form SubalgebraNormalizer(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-SubalgebraNormalizer(...).

Examples

 

Example 1.

First initialize a Lie algebra and display the Lie bracket multiplication table.

Alg1   > 

(2.1)

 

Calculate the normalizer of span in span.

Alg1 > 

Alg1 > 

(2.2)

 

Calculate the normalizer of spanin .

Alg1 > 

Alg1 > 

(2.3)

 

Calculate the normalizer of spanin the Lie algebra Alg1.

Alg1 > 

Alg1 > 

(2.4)

See Also

DifferentialGeometry

LieAlgebras

Centralizer

MultiplicationTable

Query[ideal]

Query[nilpotent]

 


Download Help Document