JetCalculus[ProjectedPullback] - pullback a differential bi-form of type (r, s) by a transformation to a differential bi-form of type (r, s)
Calling Sequences
ProjectedPullback(φ, ω)
Parameters
φ - a transformation between two jet spaces
ω - a differential bi-form of type r,s defined on the range jet space of φ
Description
Examples
Let π:E→M be a fiber bundle, with base dimension n and fiber dimension m and let π∞ :J∞E →M be the ∞-th jet bundle of E. The space of p -forms ΩpJ∞E decomposes into a direct sum ΩpJ∞ = ⨁r+s =p Ωr,sJ∞E, where Ωr,s J∞E is the space of bi-forms of horizontal degree r and vertical degree s. The precise definition of the space Ωr,sJ∞Eis given in the help page for the horizontal exterior derivative. If ω ∈ ΩpJ∞ , then let ωr,s denote the type r,s component of ω in the decomposition (*). The command convert/DGbifom calculates the various bi-graded components of a form ω ∈ ΩpJ∞ .Let F→N be another fiber bundle and let φ: JkE → jℓF. Let η be a differential bi-form of type r,s on JℓF. Then the projected pullback of η is denote by φ†ω and defined by φ†η = Φ*ηr,s.
Two special cases of this general definition should be noted.
[i] If φ is the prolongation of a projectable transformation from E to F, then the pullback φ* is a bi-degree preserving transformation, that is, if η be a differential bi-form of type r,s on JℓF, then φ*η is a differential bi-form of type r,s on JℓF. Hence φ†η = φ*η.
[ii] Suppose that φ: JkE → jℓF is the prolongation of a point transformation, a contact transformation, a differential substitution or a generalized differential substitution. (See AssignTransformationType for the definitions of these different types of transformations.) Then if η is a differential bi-form of type r,s on JℓF ,φ*η= ω0+ω1+ ω2+⋅⋅⋅+ ωr, where ωi is a bi-form of degree r−i, s+i on JkE. In these cases the command ProjectedPullback(φ, ω) returns the type r,s bi-form ω0.
Use ProjectedPullback to transform a Lagrangian bi-form to a new Lagrangian bi-form using any of the above transformations.
The command ProjectedPullback is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form ProjectedPullback(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-ProjectedPullback(...).
with⁡DifferentialGeometry:with⁡JetCalculus:
First initialize several different jet spaces over bundles E1→M1, E2→M2, E3→M3. The dimension of the base spaces are dim(M1) =2, dim(M2) =1, dim(M3) =3.
DGsetup⁡x,y,u,E1,2:DGsetup⁡t,v,E2,2:DGsetup⁡p,q,r,w,E3,2:
Example 1.
Define a transformation φ1:E1→E2. This transformation is a projectable transformation and therefore pullbacks by the prolongation of φ1can be calculated directly using the Pullback command.
Φ1 ≔ Transformation⁡E1,E2,t=x,v[]=x2⁢u[]
Φ1:=_DG⁡transformation,E1,0,E2,0,,1002⁢x⁢u0x2,x,t,x2⁢u,v,_DG⁡transformation,E1,0,E2,0,,1002⁢x⁢u0x2,x,t,x2⁢u,v
prPhi1 ≔ Prolong⁡Φ1,2
prPhi1:=_DG⁡transformation,E1,2,E2,2,projectable,2,100000002⁢x⁢u0x2000002⁢x⁢u1+2⁢u02⁢xx200002⁢x⁢u1,1+4⁢u1024⁢x0x200,x,t,x2⁢u,v,x2⁢u1+2⁢x⁢u,v1,x2⁢u1,1+4⁢x⁢u1+2⁢u,v1,1,_DG⁡transformation,E1,2,E2,2,projectable,2,100000002⁢x⁢u0x2000002⁢x⁢u1+2⁢u02⁢xx200002⁢x⁢u1,1+4⁢u1024⁢x0x200,x,t,x2⁢u,v,x2⁢u1+2⁢x⁢u,v1,x2⁢u1,1+4⁢x⁢u1+2⁢u,v1,1
Tools:-DGinfo⁡prPhi1,TransformationType
projectable,2
Pullback the contact 1-form Cv[1] on J2E2 to a contact form on J2E1 -- this can be done with either the Pullback command or the ProjectedPullback command.
Pullback⁡prPhi1,Cv1
_DG⁡biform,E1,0,1,3,2⁢x,4,x2,_DG⁡biform,E1,0,1,3,2⁢x,4,x2
ProjectedPullback⁡prPhi1,Cv1
Example 2
Define a point transformation φ1:E1→E3 and prolong it to a transformation J1E1 → J1E3.
Φ2 ≔ Transformation⁡E1,E3,p=u[],q=y,r=1,w[]=x
Φ2:=_DG⁡transformation,E1,0,E3,0,,001010000100,u,p,y,q,1,r,x,w,_DG⁡transformation,E1,0,E3,0,,001010000100,u,p,y,q,1,r,x,w
prPhi2 ≔ Prolong⁡Φ2,1
prPhi2:=_DG⁡transformation,E1,1,E3,1,point,1,00100010000000010000000−1u120000u2u12−1u100000,u,p,y,q,1,r,x,w,1u1,w1,−u2u1,w2,0,w3,_DG⁡transformation,E1,1,E3,1,point,1,00100010000000010000000−1u120000u2u12−1u100000,u,p,y,q,1,r,x,w,1u1,w1,−u2u1,w2,0,w3
Calculate the projected pullback of the type (1, 0) form Dp.
ProjectedPullback⁡prPhi2,Dp
_DG⁡biform,E1,1,0,1,u1,2,u2,_DG⁡biform,E1,1,0,1,u1,2,u2
Calculate the projected pullback of the type (1, 1) form Dp ∧Cw1.
ω ≔ Dp &wedge Cw[]
ω:=_DG⁡biform,E3,1,1,1,4,1,_DG⁡biform,E3,1,1,1,4,1
ProjectedPullback⁡prPhi2,ω
_DG⁡biform,E1,1,1,1,3,−1,2,3,−u2u1,_DG⁡biform,E1,1,1,1,3,−1,2,3,−u2u1
To illustrate the definition of the projected pullback we re-derive this result using the usual Pullback command. First convert ω from a bi-form to a form θ1.
θ1 ≔ convert⁡ω,DGform
θ1:=_DG⁡form,E3,2,1,2,−w2,1,3,−w3,1,4,1,_DG⁡form,E3,2,1,2,−w2,1,3,−w3,1,4,1
Then pullback θ1 using pr φ2.
θ2 ≔ Pullback⁡prPhi2,θ1
θ2:=_DG⁡form,E1,2,1,3,−1,2,3,−u2u1,_DG⁡form,E1,2,1,3,−1,2,3,−u2u1
Then convert θ2 back to a bi-form and take the type [1, 1] part.
θ3 ≔ convert⁡θ2,DGbiform,1,1
θ3:=_DG⁡biform,E1,1,1,1,3,−1,2,3,−u2u1,_DG⁡biform,E1,1,1,1,3,−1,2,3,−u2u1
Example 3
Define a differential substitution φ3:J2E2→E1 and prolong it to a transformation J2E3 → J2E1.
Φ3 ≔ Transformation⁡E2,E1,x=v[],y=v1,u[]=v2
Φ3:=_DG⁡transformation,E2,1,E1,0,,010001000,v,x,v1,y,v2,u,_DG⁡transformation,E2,1,E1,0,,010001000,v,x,v1,y,v2,u
prPhi3 ≔ Prolong⁡Φ3,1
prPhi3:=_DG⁡transformation,E2,2,E1,1,generalizedDifferentialSubstitution,1,01000010000000−2⁢v12⁢v1,2v12+v1,122+v1,2v12+v1,12−2⁢v1⁢v1,2⁢v1,1v12+v1,12200−2⁢v1⁢v1,2⁢v1,1v12+v1,122−2⁢v1,12⁢v1,2v12+v1,122+v1,2v12+v1,12,v,x,v1,y,v2,u,v1⁢v1,2v12+v1,12,u1,v1,1⁢v1,2v12+v1,12,u2,_DG⁡transformation,E2,2,E1,1,generalizedDifferentialSubstitution,1,01000010000000−2⁢v12⁢v1,2v12+v1,122+v1,2v12+v1,12−2⁢v1⁢v1,2⁢v1,1v12+v1,12200−2⁢v1⁢v1,2⁢v1,1v12+v1,122−2⁢v1,12⁢v1,2v12+v1,122+v1,2v12+v1,12,v,x,v1,y,v2,u,v1⁢v1,2v12+v1,12,u1,v1,1⁢v1,2v12+v1,12,u2
Calculate the projected pullback of the type (1, 0) form 2Dx +3 Dy
ProjectedPullback⁡prPhi3,2⁢Dx+3⁢Dy
_DG⁡biform,E2,1,0,1,3⁢v1,1+2⁢v1,_DG⁡biform,E2,1,0,1,3⁢v1,1+2⁢v1
Calculate the projected pullback of the type (1, 0) form Cu
ProjectedPullback⁡prPhi3,u1⁢Cu[]
_DG⁡biform,E2,0,1,2,−v12⁢v1,22v12+v1,122,3,−v1⁢v1,22⁢v1,1v12+v1,122,_DG⁡biform,E2,0,1,2,−v12⁢v1,22v12+v1,122,3,−v1⁢v1,22⁢v1,1v12+v1,122
See Also
DifferentialGeometry
JetCalculus
DGinfo
Prolong
Pullback
PushforwardTotalVector
Transformation
Download Help Document
What kind of issue would you like to report? (Optional)