Subalgebra - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Query[Subalgebra] - check if a list of vectors defines a Lie subalgebra

Calling Sequences

     Query(S, "Subalgebra")

     Query(S, parm, "Subalgebra")

Parameters

     S       - a list of independent vectors in a Lie algebra 𝔤

     parm    - (optional) a set of parameters appearing in the list of vectors S.  It is assumed that the set of vectors S is well-defined when the parameters vanish.

 

Description 

Examples

Description 

• 

A list of vectors S defines a basis for a Lie subalgebra if  x, y  spanS for all x,y S. 

• 

Query(S, "Subalgebra") returns true if the set S defines a subalgebra.

• 

Query(S, parm, "Subalgebra") returns a sequence TF, Eq, Soln, SubAlgList.  Here TF is true if Maple finds parameter values for which S is a subalgebra and false otherwise; Eq is the set of equations (with the variables in parm as unknowns) which must be satisfied for S to be a subalgebra; Soln is the list of solutions to the equations Eq; and SubAlgList is the list of subalgebras obtained from the parameter values given by the different solutions in Soln.

• 

The program calculates the defining equations Eq for S to be a subalgebra as follows.  First the list of vectors S is evaluated with the parameters set to zero to obtain a set of vectors S0.  The program ComplementaryBasis is then used to calculate a complement C to S0  The list of vectors B= S, C then gives a basis for the entire Lie algebra 𝔤.  For each x,y S  the bracket x,y is calculated and expressed as a linear combination of the vectors in the basis B. The components of [x,y[ in C must all vanish for S to be a Lie subalgebra.

• 

We remark that the equations Eq, which the parameters must satisfy in order for S to be a subalgebra, will in general be a system of coupled quadratic equations.  Maple may not be able to solve these equations or may not solve them in full generality.

• 

The command Query is part of the DifferentialGeometry:-LieAlgebras package.  It can be used in the form Query(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Query(...).

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

First initialize a Lie algebra.

L_DGLieAlgebra,Alg,4,1,4,1,0,2,3,1,1,2,4,2,1,3,4,3,1

L:=e2,e3=e1,e2,e4=e2,e3,e4=e3

(2.1)

DGsetupL:

 

The vectors S1 = e2, e3, e4 do not determine a subalgebra while the vectors S2 = e1, e3, e4 do.

Alg > 

S1e2,e3,e4:

Alg > 

QueryS1,Subalgebra

false

(2.2)
Alg > 

S2e1,e3,e4:

Alg > 

QueryS2,Subalgebra

true

(2.3)

 

We find the values of the parameters  a1, a2 for which S3 = e2, e1+a1e3 +a2e4 determines a Lie subalgebra.

Alg > 

S3evalDGe2,e1+a1e3+a2e4:

Alg > 

QueryS3,a1,a2,Subalgebra

true,0,a12,a1a2,a1=0,a2=a2,e2,a2e4+e1

(2.4)

 

There are no values of the parameters  a1, a2  for which S4 = e2, e3+a1e2 +a2e4 determines a Lie subalgebra.

Alg > 

S4evalDGe2,e3+a1e2+a2e4:

Alg > 

QueryS4,a1,a2,Subalgebra

false,0,1

(2.5)

See Also

DifferentialGeometry

LieAlgebras

Query