Tensor[NullTetrad] - construct a null tetrad from an orthonormal tetrad or from a solder form and a spinor basis
Tensor[OrthonormalTetrad] - construct an orthonormal tetrad from a null tetrad
Calling Sequences
NullTetrad(OrthTetrad)
NullTetrad(σ ,SpinBasis)
OrthonormalTetrad(NullTetrad)
Parameters
OrthTetrad - a list of 4 vectors defining an orthonormal tetrad with respect to a metric g with signature 1, −1, −1, −1
σ - a solder form with index type ["con", " cov", "cov"]
SpinBasis - a list of 2 rank 1 spinors, with spinor inner product = 1
NullTetrad - a list of 4 vectors defining a null tetrad with respect to a Lorentzian metric g with signature 1,−1,−1,−1
Description
Examples
See Also
Let g be a metric on a 4-dimensional manifold with signature 1,−1,−1,−1. A list of 4 vectors Et,Ex,Ey,Ez defines an orthonormal tetrad if
gEt,Et=1, gEx,Ex=gEy,Ey=gEz,Ez=−1,
and all other inner products vanish. A list of 4 vectors L,N,M,M‾ defines a null tetrad if L and N are real, M‾ is the complex conjugate of M,
gL,N=1, gM,M‾=−1,
and all other inner products vanish. In particular, the vectors L,N,M,M‾ are all null vectors.
Given an orthonormal tetrad OrthTetrad = Et,Ex,Ey,Ez, the command NullTetrad(OrthTetrad) constructs the null tetrad given by
L=12Et+Ez, N=12Et − Ez, M=12Ex+iEy, M‾=12Ex−iEy .
Let sigma be a solder form (index type ["con", " cov", "cov"]), with components σAA'i ,for the metric g. Let οA and ιB be rank 1, unprimed spinors with εABοAιB=1. Let ο‾ and ι‾ be their conjugates (see ConjugateSpinor). Then the following vectors
Li=σAA'iοA ο‾A', Ni=σAA'iιA ι‾A', Mi=σAA'iοAι‾A', M‾ i=σAA'iιAο‾A'
define a null tetrad. This null tetrad is computed with the second calling sequence NullTetrad(sigma, [ο, ι]).
Given a null tetrad NullTetrad =[L,N,M,M]‾, the command OrthonormalTetrad(NullTetrad) constructs the orthonormal tetrad defined by
Et=12L+N, Ex=12M+M‾, Ey=1i2M− M‾, Ez=12L−N
The command DGGramSchmidt can also be used to construct an orthonormal tetrad.
The command GRQuery can be used to check that a given tetrad is a null tetrad or an orthonormal tetrad.
These commands are part of the DifferentialGeometry:-Tensor package, and so can be used in the form NullTetrad(...) or OrthonormalTetrad(...) only after executing the commands with(DifferentialGeometry); with(Tensor) in that order. They can always be used in the long form DifferentialGeometry:-Tensor:-NullTetrad or DifferentialGeometry:-Tensor:-OrthonormalTetrad.
with⁡DifferentialGeometry:with⁡Tensor:
Example 1.
First create manifold M with coordinates t,x,y,z.
DGsetup⁡t,x,y,z,M
frame name: M
Define a spacetime metric g on M with signature 1,−1,−1,−1.
g ≔ evalDG⁡dt &t dt−dx &t dx−dy &t dy−dz &t dz
g:=_DG⁡tensor,M,cov_bas,cov_bas,,1,1,1,2,2,−1,3,3,−1,4,4,−1,_DG⁡tensor,M,cov_bas,cov_bas,,1,1,1,2,2,−1,3,3,−1,4,4,−1
Define an orthonormal tetrad F on M with respect to the metric g. Verify using the command GRQuery.
F ≔ D_t,D_x,D_y,D_z
F:=_DG⁡vector,M,,1,1,_DG⁡vector,M,,1,1,_DG⁡vector,M,,2,1,_DG⁡vector,M,,2,1,_DG⁡vector,M,,3,1,_DG⁡vector,M,,3,1,_DG⁡vector,M,,4,1,_DG⁡vector,M,,4,1
GRQuery⁡F,g,OrthonormalTetrad
true
Use the orthonormal tetrad F to construct a null tetrad NT.
NT ≔ NullTetrad⁡F
NT:=_DG⁡vector,M,,1,22,4,22,_DG⁡vector,M,,1,22,4,22,_DG⁡vector,M,,1,22,4,−22,_DG⁡vector,M,,1,22,4,−22,_DG⁡vector,M,,2,22,3,I2⁢2,_DG⁡vector,M,,2,22,3,I2⁢2,_DG⁡vector,M,,2,22,3,−I2⁢2,_DG⁡vector,M,,2,22,3,−I2⁢2
Verify this result using the command GRQuery.
GRQuery⁡NT,g,NullTetrad
It is a simple matter to check directly, using the TensorInnerProduct command, that NT is a null tetrad,
TensorInnerProduct⁡g,NT,NT
Example 2.
We use spinors to create a null tetrad. First create a vector bundle E→M with base coordinates t,x,y,z and fiber coordinates z1, z2, w1, w2.
DGsetup⁡t,x,y,z,z1,z2,w1,w2,E
frame name: E
Define a spacetime metric g2 on M with signature 1,−1,−1,−1.
g2 ≔ evalDG⁡dt &t dt−dx &t dx−dy &t dy−dz &t dz
g2:=_DG⁡tensor,E,cov_bas,cov_bas,,1,1,1,2,2,−1,3,3,−1,4,4,−1,_DG⁡tensor,E,cov_bas,cov_bas,,1,1,1,2,2,−1,3,3,−1,4,4,−1
Define an orthonormal frame F2 on M with respect to the metric g2.
F2 ≔ D_t,D_x,D_y,D_z
F2:=_DG⁡vector,E,,1,1,_DG⁡vector,E,,1,1,_DG⁡vector,E,,2,1,_DG⁡vector,E,,2,1,_DG⁡vector,E,,3,1,_DG⁡vector,E,,3,1,_DG⁡vector,E,,4,1,_DG⁡vector,E,,4,1
Compute the solder form σ defined by the orthonormal frame F2.
σ ≔ SolderForm⁡F2,indextype=con,cov,cov
σ:=_DG⁡tensor,E,con_bas,cov_vrt,cov_vrt,,1,5,7,22,1,6,8,22,2,5,8,22,2,6,7,22,3,5,8,I2⁢2,3,6,7,−I2⁢2,4,5,7,22,4,6,8,−22,_DG⁡tensor,E,con_bas,cov_vrt,cov_vrt,,1,5,7,22,1,6,8,22,2,5,8,22,2,6,7,22,3,5,8,I2⁢2,3,6,7,−I2⁢2,4,5,7,22,4,6,8,−22
Define a pair of rank 1 spinors ο and ι. Check that their spinor inner product is 1. Construct the corresponding null tetrad, N2.
ο ≔ evalDG⁡D_z1+2⁢D_z2
ο:=_DG⁡vector,E,,5,1,6,2,_DG⁡vector,E,,5,1,6,2
ι ≔ evalDG⁡2⁢D_z1+5⁢D_z2
ι:=_DG⁡vector,E,,5,2,6,5,_DG⁡vector,E,,5,2,6,5
SpinorInnerProduct⁡ο,ι
1
N2 ≔ NullTetrad⁡σ,ο,ι
N2:=_DG⁡vector,E,,1,5⁢22,2,2⁢2,4,−3⁢22,_DG⁡vector,E,,1,5⁢22,2,2⁢2,4,−3⁢22,_DG⁡vector,E,,1,29⁢22,2,10⁢2,4,−21⁢22,_DG⁡vector,E,,1,29⁢22,2,10⁢2,4,−21⁢22,_DG⁡vector,E,,1,6⁢2,2,9⁢22,3,I2⁢2,4,−4⁢2,_DG⁡vector,E,,1,6⁢2,2,9⁢22,3,I2⁢2,4,−4⁢2,_DG⁡vector,E,,1,6⁢2,2,9⁢22,3,−I2⁢2,4,−4⁢2,_DG⁡vector,E,,1,6⁢2,2,9⁢22,3,−I2⁢2,4,−4⁢2
TensorInnerProduct⁡g2,N2,N2
Example 3.
Convert the null tetrad N2 constructed in Example 2 to an orthonormal tetrad T.
T ≔ OrthonormalTetrad⁡N2
T:=_DG⁡vector,E,,1,17,2,12,4,−12,_DG⁡vector,E,,1,17,2,12,4,−12,_DG⁡vector,E,,1,12,2,9,4,−8,_DG⁡vector,E,,1,12,2,9,4,−8,_DG⁡vector,E,,3,1,_DG⁡vector,E,,3,1,_DG⁡vector,E,,1,−12,2,−8,4,9,_DG⁡vector,E,,1,−12,2,−8,4,9
Check the result.
TensorInnerProduct⁡g2,T,T
DifferentialGeometry, Tensor, ConjugateSpinor, DGGramSchmidt, GRQuery, SolderForm, SpinorInnerProduct, TensorInnerProduct
Download Help Document
What kind of issue would you like to report? (Optional)