 Reachable - Maple Help

GraphTheory

 Reachable
 determine vertices reachable from a given vertex Calling Sequence Reachable(G, v) Parameters

 G - graph v - vertex of the graph Description

 • Reachable returns a list of all vertices reachable from the vertex v in the graph G.
 • A vertex w is said to be reachable from a vertex v if there exists a path in the graph from v to w.
 • To produce an actual spanning tree of vertices reachable from v, see SpanningTree or MinimalSpanningTree. Examples

 > $\mathrm{with}\left(\mathrm{GraphTheory}\right):$
 > $\mathrm{C6}≔\mathrm{CycleGraph}\left(6\right)$
 ${\mathrm{C6}}{≔}{\mathrm{Graph 1: an undirected unweighted graph with 6 vertices and 6 edge\left(s\right)}}$ (1)
 > $\mathrm{Reachable}\left(\mathrm{C6},1\right)$
 $\left[{1}{,}{2}{,}{3}{,}{4}{,}{5}{,}{6}\right]$ (2)
 > $G≔\mathrm{Graph}\left(5,\left\{\left[1,2\right],\left[2,3\right],\left\{1,4\right\},\left\{4,5\right\}\right\}\right)$
 ${G}{≔}{\mathrm{Graph 2: a directed unweighted graph with 5 vertices and 6 arc\left(s\right)}}$ (3)
 > $\mathrm{Reachable}\left(G,2\right)$
 $\left[{2}{,}{3}\right]$ (4) Compatibility

 • The GraphTheory[Reachable] command was introduced in Maple 2018.