GroupTheory
GeneralOrthogonalGroup
construct a permutation group isomorphic to a general orthogonal group
Calling Sequence
Parameters
Description
Examples
Compatibility
GeneralOrthogonalGroup(d, n, q)
d
-
0, 1 or -1
n
a positive integer
q
power of a prime number
The general orthogonal group GO⁡d,n,q is the set of all n×n matrices over the field with q elements that respect a non-singular quadratic form. The value of d must be 0 for odd n, or 1 or −1 for even n.
The GeneralOrthogonalGroup( d, n, q ) command returns a permutation group isomorphic to the general orthogonal group GO⁡d,n,q for the implemented values of d, n and q.
The implemented ranges for n and q are as follows:
n=2
q≤100
n=3
q≤20
n=4
q≤10
n=5
q≤5
n=6,7,8
q=3
n=9,10,11
q=2
If the argument q is not a prime power (and is non-numeric), then a symbolic group representing GO⁡d,n,q is returned.
In the Standard Worksheet interface, you can insert this group into a document or worksheet by using the Group Constructors palette.
with⁡GroupTheory:
G≔GeneralOrthogonalGroup⁡0,7,2
G≔GO7,2
Generators⁡G
1,2,3,4,5,76,8,11,15,21,279,12,16,22,29,3810,13,18,23,31,4114,19,24,33,44,3417,20,2526,35,45,53,32,4228,36,4730,39,50,56,61,5837,4840,51,46,54,59,6249,55,60,63,52,57,5,67,98,1011,1413,1715,2018,1921,2622,2823,3024,3225,3429,3731,4033,4336,4638,4139,4942,4445,5248,5153,5857,6259,61
G≔GeneralOrthogonalGroup⁡1,4,5
G≔GO4,5
GroupOrder⁡G
28800
G≔GeneralOrthogonalGroup⁡−1,4,5
Degree⁡G
104
31200
G≔GeneralOrthogonalGroup⁡0,3,5
G≔GO3,5
CharacterTable⁡G
C1a2a2b2c2d2e3a4a4b…|C|1110101515203030…X1111111111…X21−1−111−11−11…X31−11−11−111−1…X411−1−1111−1−1…X54−4−2200100…X64−42−200100…X744−2−200100…X8442200100…⋮⋮⋮⋮⋮⋮⋮⋮⋮⋮16 × 15 Matrix
OrderClassPolynomial⁡G,x
24⁢x10+60⁢x6+24⁢x5+60⁢x4+20⁢x3+51⁢x2+x
DerivedSeries⁡G
GO3,5▹1,42,83,95,156,237,2010,1211,1913,1614,2417,2118,22,1,42,83,225,67,189,1011,2312,1713,1415,1619,2420,21,1,202,193,94,215,156,167,128,2410,2211,1314,2317,18
Hypercentre⁡G
1,42,83,95,156,167,1710,2211,1412,1813,2319,2420,21
IsMalnormal⁡SylowSubgroup⁡2,G,G
false
GroupOrder⁡PCore⁡2,G
2
IsMalnormal⁡SylowSubgroup⁡3,G,G
IsMalnormal⁡SylowSubgroup⁡5,G,G
GroupOrder⁡GeneralOrthogonalGroup⁡0,7,3
18341406720
GroupOrder⁡GeneralOrthogonalGroup⁡1,8,2
348364800
GroupOrder⁡GeneralOrthogonalGroup⁡−1,8,2
394813440
GroupOrder⁡GeneralOrthogonalGroup⁡−1,4,q
igcd⁡2,q−1⁢igcd⁡2,q⁢q2⁢q2+1⁢q2−1
GroupOrder⁡GeneralOrthogonalGroup⁡1,4,q
igcd⁡2,q−1⁢igcd⁡2,q⁢q2⁢q2−12
The GroupTheory[GeneralOrthogonalGroup] command was introduced in Maple 17.
For more information on Maple 17 changes, see Updates in Maple 17.
The GroupTheory[GeneralOrthogonalGroup] command was updated in Maple 2020.
See Also
GroupTheory[Degree]
GroupTheory[GeneralLinearGroup]
GroupTheory[GroupOrder]
GroupTheory[SpecialOrthogonalGroup]
Download Help Document
What kind of issue would you like to report? (Optional)