GroupTheory
Orbit
compute the orbit of a point under the action of a permutation group
Orbits
compute all the orbits of a permutation group
Calling Sequence
Parameters
Description
Examples
Compatibility
Orbit( alpha, G )
Orbits( G )
G
-
a permutation group
alpha
posint; a point whose orbit is to be computed
The Orbit( alpha, G ) command returns the orbit of the point alpha under the action of the permutation group G.
The returned value is an object that supports the following methods.
Representative( orb )
returns a representative of the orbit orb
numelems( orb )
returns the cardinality of the orbit orb
member( x, orb ) or x in orb
returns true if x belongs to the orbit orb
Elements( orb )
returns the elements of the orbit orb, as a set
The Orbits( G ) command returns the set of all orbits of the permutation group G.
with⁡GroupTheory:
G ≔ RubiksCubeGroup⁡
G≔ < a permutation group on 48 letters with 6 generators >
O1 ≔ Orbit⁡1,G
O1≔1 < a permutation group on 48 letters with 6 generators >
numelems⁡O1
24
2∈O1
false
O2 ≔ Orbit⁡2,G
O2≔2 < a permutation group on 48 letters with 6 generators >
numelems⁡O2
orbs ≔ Orbits⁡G
orbs≔1 < a permutation group on 48 letters with 6 generators > ,2 < a permutation group on 48 letters with 6 generators >
nops⁡orbs
2
Elements⁡O2
2,4,5,7,10,12,13,15,18,20,21,23,26,28,29,31,34,36,37,39,42,44,45,47
The GroupTheory[Orbit] and GroupTheory[Orbits] commands were introduced in Maple 17.
For more information on Maple 17 changes, see Updates in Maple 17.
See Also
GroupTheory[Elements]
GroupTheory[RubiksCubeGroup]
numelems
Perm
Download Help Document