GroupTheory/AgemoSeries - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : GroupTheory/AgemoSeries

GroupTheory

  

AgemoSeries

  

construct the agemo series of a _p_-group

  

OmegaSeries

  

construct the omega series of a _p_-group

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

AgemoSeries( G )

OmegaSeries( G )

Parameters

G

-

a permutation group

Description

• 

The agemo series of a p-group G, where p is a prime number, is the descending normal series

G=0G1GrG=1

of G whose terms are the successive agemo subgroups ℧nG of G, where ℧0G=G. See GroupTheory[AgemoPGroup]

• 

The AgemoSeries( G ) command constructs the agemo series of a group G, which must be a finite p-group, for some prime p.

• 

The omega series of a finite p-group G is the ascending normal series

1=Ω0GΩ1GΩrG=G

of G, whose terms are the successive omega subgroups ΩnG of G. See GroupTheory[OmegaPGroup].

• 

The OmegaSeries( G ) command constructs the omega series of a finite p-group G.

• 

The group G must be an instance of a permutation group.

• 

Both the agemo and omega series of G are represented by a NormalSeries object which admits certain operations common to all normal series.  See GroupTheory[Series].

Examples

withGroupTheory:

GDihedralGroup8

GD8

(1)

asAgemoSeriesG

asD8&Agemo;1D8&Agemo;2D8&Agemo;3D8

(2)

numelemsas

4

(3)

osOmegaSeriesG

osD8

(4)

numelemsos

2

(5)

See Also

GroupTheory[AgemoPGroup]

GroupTheory[OmegaPGroup]