ElementOrder - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

ElementOrder

  

compute the order of a group element

  

ElementPower

  

compute  powers of a group element

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

ElementOrder(g, G)

ElementPower(g, n, G)

Parameters

g

-

group element whose order is to be computed

G

-

group containing the element g

n

-

an integer

Description

• 

The order of an element g of a group G is the least positive integer n such that gn is equal to the identity element of G, if one exists, and  otherwise.

• 

The GroupOrder(g, G) command computes the order of the element g of the group G, if possible. Note that this is not always possible in case G is a finitely presented group.

• 

Note that if g is a permutation, then ElementOrder(g, G) is equivalent to PermOrder(g).

• 

The ElementPower( g, n, G ) command computes the power gn of the element g in the group G.

• 

If g is a permutation, then ElementPower( g, n, G ) can be computed more simply as g^n.

Examples

withGroupTheory:

GAlt4

GA4

(1)

ElementOrderPerm1,2,4,G

3

(2)

PermOrderPerm1,2,4

3

(3)

ElementPowerPerm1,2,4,3,G

(4)

ElementPowerPerm1,2,4,2,G

1,4,2

(5)

CCayleyTableGroup1|2|3|4|5|6,2|1|4|3|6|5,3|5|1|6|2|4,4|6|2|5|1|3,5|3|6|1|4|2,6|4|5|2|3|1

C < a Cayley table group with 6 elements >

(6)

ElementOrder5&comma;C

3

(7)

ElementOrderElementPower5&comma;3&comma;C&comma;C

1

(8)

Compatibility

• 

The GroupTheory[ElementOrder] command was introduced in Maple 2015.

• 

For more information on Maple 2015 changes, see Updates in Maple 2015.

• 

The GroupTheory[ElementPower] command was introduced in Maple 2018.

• 

For more information on Maple 2018 changes, see Updates in Maple 2018.

See Also

GroupTheory[AlternatingGroup]

GroupTheory[CayleyTableGroup]

GroupTheory[Exponent]

GroupTheory[GroupOrder]

GroupTheory