DegreeProfile - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Hypergraphs

 DegreeProfile
 Return the degrees of the vertices of an hypergraph

 Calling Sequence DegreeProfile(H)

Parameters

 H -

Description

 • The command DegreeProfile(H) returns a list of the degrees of the vertices of the hypergraph H. This list is sorted according to the ordering of the vertices as in the list Vertices(H).

Terminology

 • Hypergraph : mathematically, a hypergraph is a pair (X, Y) where X  is a finite set and Y is a set of non-empty subsets of X.
 • Vertices : the members of X are called the vertices of the hypergraph (X, Y).
 • Hyperedges : the members of Y are called the hyperedges (or simply edges) of  the hypergraph (X, Y).
 • Degree : the degree of a vertex v of a hypergraph  H :=(X, Y)  is the number elements of Y to which v belongs, that is, the number of hyperedges of H to which v belongs.

Examples

 > $\mathrm{with}\left(\mathrm{Hypergraphs}\right):$$\mathrm{with}\left(\mathrm{ExampleHypergraphs}\right):$

Create a hypergraph from its vertices and edges.

 > $H≔\mathrm{Hypergraph}\left(\left[1,2,3,4,5,6,7\right],\left[\left\{1,2,3\right\},\left\{2,3\right\},\left\{4\right\},\left\{3,5,6\right\}\right]\right)$
 ${H}{≔}{\mathrm{< a hypergraph on 7 vertices with 4 hyperedges >}}$ (1)

Print its vertices and edges.

 > $\mathrm{Hypergraphs}:-\mathrm{Vertices}\left(H\right);$$\mathrm{Hyperedges}\left(H\right)$
 $\left[{1}{,}{2}{,}{3}{,}{4}{,}{5}{,}{6}{,}{7}\right]$
 $\left[\left\{{4}\right\}{,}\left\{{2}{,}{3}\right\}{,}\left\{{1}{,}{2}{,}{3}\right\}{,}\left\{{3}{,}{5}{,}{6}\right\}\right]$ (2)

Compute the degree profile of H.

 > $\mathrm{DegreeProfile}\left(H\right)$
 $\left[{1}{,}{2}{,}{3}{,}{1}{,}{1}{,}{1}{,}{0}\right]$ (3)

Compute the rank and the anti-rank of H.

 > $\mathrm{Rank}\left(H\right);$$\mathrm{AntiRank}\left(H\right)$
 ${3}$
 ${1}$ (4)

Check whether H is regular.

 > $\mathrm{IsRegular}\left(H\right)$
 ${\mathrm{false}}$ (5)

Check whether H is uniform.

 > $\mathrm{IsUniform}\left(H\right)$
 ${\mathrm{false}}$ (6)

Create another hypergraph.

 > $H≔\mathrm{Lovasz}\left(3\right)$
 ${H}{≔}{\mathrm{< a hypergraph on 6 vertices with 10 hyperedges >}}$ (7)

Print its vertices and edges.

 > $\mathrm{Hypergraphs}:-\mathrm{Vertices}\left(H\right);$$\mathrm{Hyperedges}\left(H\right)$
 $\left[{1}{,}{2}{,}{3}{,}{4}{,}{5}{,}{6}\right]$
 $\left[\left\{{1}{,}{2}{,}{4}\right\}{,}\left\{{1}{,}{3}{,}{4}\right\}{,}\left\{{2}{,}{3}{,}{4}\right\}{,}\left\{{1}{,}{2}{,}{5}\right\}{,}\left\{{1}{,}{3}{,}{5}\right\}{,}\left\{{2}{,}{3}{,}{5}\right\}{,}\left\{{1}{,}{2}{,}{6}\right\}{,}\left\{{1}{,}{3}{,}{6}\right\}{,}\left\{{2}{,}{3}{,}{6}\right\}{,}\left\{{4}{,}{5}{,}{6}\right\}\right]$ (8)

Compute the degree profile of H.

 > $\mathrm{DegreeProfile}\left(H\right)$
 $\left[{6}{,}{6}{,}{6}{,}{4}{,}{4}{,}{4}\right]$ (9)

Compute the rank and the anti-rank of H.

 > $\mathrm{Rank}\left(H\right);$$\mathrm{AntiRank}\left(H\right)$
 ${3}$
 ${3}$ (10)

Check whether H is regular.

 > $\mathrm{IsRegular}\left(H\right)$
 ${\mathrm{false}}$ (11)

Check whether H is uniform.

 > $\mathrm{IsUniform}\left(H\right)$
 ${\mathrm{true}}$ (12)

Create another hypergraph.

 > $H≔\mathrm{Kuratowski}\left(\left\{1,2,3,4,5\right\},3\right)$
 ${H}{≔}{\mathrm{< a hypergraph on 5 vertices with 10 hyperedges >}}$ (13)

Print its vertices and edges.

 > $\mathrm{Hypergraphs}:-\mathrm{Vertices}\left(H\right);$$\mathrm{Hyperedges}\left(H\right)$
 $\left[{1}{,}{2}{,}{3}{,}{4}{,}{5}\right]$
 $\left[\left\{{1}{,}{2}{,}{3}\right\}{,}\left\{{1}{,}{2}{,}{4}\right\}{,}\left\{{1}{,}{3}{,}{4}\right\}{,}\left\{{2}{,}{3}{,}{4}\right\}{,}\left\{{1}{,}{2}{,}{5}\right\}{,}\left\{{1}{,}{3}{,}{5}\right\}{,}\left\{{2}{,}{3}{,}{5}\right\}{,}\left\{{1}{,}{4}{,}{5}\right\}{,}\left\{{2}{,}{4}{,}{5}\right\}{,}\left\{{3}{,}{4}{,}{5}\right\}\right]$ (14)

Compute the degree profile of H.

 > $\mathrm{DegreeProfile}\left(H\right)$
 $\left[{6}{,}{6}{,}{6}{,}{6}{,}{6}\right]$ (15)

Compute the rank and the anti-rank of H.

 > $\mathrm{Rank}\left(H\right);$$\mathrm{AntiRank}\left(H\right)$
 ${3}$
 ${3}$ (16)

Check whether H is regular.

 > $\mathrm{IsRegular}\left(H\right)$
 ${\mathrm{true}}$ (17)

Check whether H is uniform.

 > $\mathrm{IsUniform}\left(H\right)$
 ${\mathrm{true}}$ (18)

References

 Claude Berge. Hypergraphes. Combinatoires des ensembles finis. 1987,  Paris, Gauthier-Villars, translated to English.
 Claude Berge. Hypergraphs. Combinatorics of Finite Sets.  1989, Amsterdam, North-Holland Mathematical Library, Elsevier, translated from French.
 Charles Leiserson, Liyun Li, Marc Moreno Maza and Yuzhen Xie " Parallel computation of the minimal elements of a poset." Proceedings of the 4th International Workshop on Parallel Symbolic Computation (PASCO) 2010: 53-62, ACM.

Compatibility

 • The Hypergraphs[DegreeProfile] command was introduced in Maple 2024.
 • For more information on Maple 2024 changes, see Updates in Maple 2024.