Dec - Maple Help

Online Help

All Products    Maple    MapleSim


Ordinals

  

Dec

  

decrement ordinal

 

Calling Sequence

Parameters

Returns

Description

Examples

Compatibility

Calling Sequence

Dec(a)

Parameters

a

-

ordinal, nonnegative integer, or polynomial with positive integer coefficients

Returns

• 

ordinal data structure, nonnegative integer, polynomial with positive integer coefficients, or NULL.

Description

• 

The Dec(a) calling sequence decrements the ordinal number a, if possible. If a=0, then the return value is NULL. Otherwise, if the trailing term is ωec, where e is an ordinal and c is a positive integer, then exactly one of the following happens:

– 

If e=0 then c is replaced by c1.

– 

If e0 and c1, then the trailing term is replaced by the sum of the two terms ωec1+ωDece.

– 

Otherwise, if e0 and c=1, then the trailing exponent is replaced by Dece.

• 

Note that in general Deca is not the largest ordinal number smaller than a, because such an ordinal does not exist if a is a limit ordinal, which means its trailing degree is nonzero.

• 

If a is a parametric ordinal number and c1 is not a polynomial with nonnegative integer coefficients, an error is raised.

Examples

withOrdinals:

aOrdinalω,2,2,3,0,4

aωω2+ω23+4

(1)

whilea0doaDeca;printaenddo:

ωω2+ω23+3

ωω2+ω23+2

ωω2+ω23+1

ωω2+ω23

ωω2+ω22+ω

ωω2+ω22+1

ωω2+ω22

ωω2+ω2+ω

ωω2+ω2+1

ωω2+ω2

ωω2+ω

ωω2+1

ωω2

ωω+ω

ωω+1

ωω

ω

1

0

(2)

Dec5

4

(3)

Parametric examples.

Decx+3

x+2

(4)

bOrdinal1,3,0,x2+x+2

bω3+x2+x+2

(5)

Dec

ω3+x2+x+1

(6)

Dec

ω3+x2+x

(7)

Dec

Error, (in Ordinals:-Dec) cannot decrement, x^2+x

Compatibility

• 

The Ordinals[Dec] command was introduced in Maple 2015.

• 

For more information on Maple 2015 changes, see Updates in Maple 2015.

See Also

Ordinals

Ordinals[Ordinal]

Ordinals[Sub]

Ordinals[tdegree]