Factor - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


PolynomialTools[Approximate]

  

Factor

  

compute approximate factorization

 

Calling Sequence

Parameters

Options

Description

Examples

References

Compatibility

Calling Sequence

Factor(F, vars)

Factor(F, vars, options)

Parameters

F

-

polynom({numeric,complex(numeric)})

vars

-

set or list of variables

Options

• 

noexact

  

if provided, exact factorization of F will not be attempted

• 

optimize

  

if given then a post-processing step is done on the output, using Optimization:-NLPSolve to return an approximate factorization with smaller backward error. Optionally, it can be given as optimize=list with a list of extra options to be passed to optimization.

Description

• 

After a series of initial preprocessing steps designed to handle exact and degenerate cases, numerical factors of F are found from the a low rank approximation of its RuppertMatrix.

• 

This command works for univariate polynomials by calling factor which finds the real linear and quadratic factors from the roots.

Examples

withPolynomialTools:-Approximate:

Fsortexpandx2+y21x3y3+1,x,y

Fx5+x3y2x2y3y5x3+y3+x2+y21

(1)

aF_8FactorexpandF+108xy,x,y

aF_83.444064832546250.552477515342034+9.46731687426374×10−11x+1.34863064328525×10−9y+0.552477517547611x2+2.03989803334921×10−9xy+0.552477516001717y20.5255500377451326.82222843397422×10−10x3.43514285807329×10−9y7.62609217128201×10−10x2+6.10950366484575×10−10xy+6.99438205675422×10−10y20.525550038461344x33.70256663288842×10−10yx28.19581626434466×10−10y2x+0.525550036601363y3

(2)

sortfnormalexpandaF_8,x,y

1.x5+0.9999999988x3y20.9999999958x2y30.9999999937y50.9999999947x3+0.9999999990y3+0.9999999972x2+0.9999999972y20.9999999946

(3)

ilog10normexpandFaF_8,2normF,2

−9

(4)

aF_4FactorexpandF+104xy,x,y

aF_43.472662930000140.5528858274411339.97108941071252×10−6x+0.0000179791567479040y+0.552898569944407x2+8.98886932463720×10−6xy+0.552899121071376y20.5208340242676435.33436675036546×10−6x+0.0000175929390281592y+4.50859262549109×10−6x20.0000210937198292715xy+9.51805868068816×10−6y2+0.520828698460220x3+2.48682307880352×10−6yx22.34026244957104×10−6y2x0.520822689868282y3

(5)

sortfnormalexpandaF_4,6,x,y

1.00001x5+1.00000x3y20.999991x2y30.999996y50.999994x3+1.00001y3+1.00001x2+1.00000y20.999994

(6)

ilog10normexpandFaF_4,2normF,2

−5

(7)

aF_4IFactorexpandF+104Ixy,x,y

aF_4I3.33619010359970+0.00138346582082882I0.563243378347060+0.I+3.16408238493893×10−100.0000272293643435069Ix+−1.01117917827161×10−10+0.0000398337911251992Iy+0.563243374465927+0.0000246224780583257Ix28.64543563279926×10−9+0.0000388463617204220Ixy+0.563243379991283+0.0000319121660331265Iy20.5321732439755850.000251363881658109I+−3.36046554181828×10−11+7.37229024894790×10−6Ix1.32661446390877×10−8+0.0000153645990045513Iy3.07282917970803×10−9+4.12354640896998×10−6Ix2+7.04839785801415×10−9+0.0000239416896984294Ixy8.60637220725151×10−10+0.0000123372148927410Iy2+0.5321732431755380.000243948150310564Ix32.53017116814042×10−9+2.35423346961460×10−6Iyx2+−3.18762218104142×10−10+4.05319056283696×10−6Iy2x+−0.532173249337958+0.000239782043422948Iy3

(8)

sortfnormalexpandaF_4I,6,x,y

1.00000x5+1.00000x3y21.00000x2y31.00000y5+0.000115711Ix3y1.00000x3+1.00000y3+1.00000x20.000113958Ixy+1.00000y21.00000+0.I

(9)

ilog10normexpandFaF_4I,2normF,2

−5

(10)

References

  

Gao, S.; Kaltofen, E.; May, J.; Yang, Z.; and Zhi, L. "Approximate factorization of multivariate polynomials via differential equations." Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation (ISSAC 2004),  pp. 167-174. Ed. J. Guitierrez. ACM Press, 2004.

  

Kaltofen, E.; May, J.; Yang, Z.; and Zhi, L. "Approximate factorization of multivariate polynomials using singular value decomposition." Journal of Symbolic Computation Vol. 43(5), (2008): 359-376.

Compatibility

• 

The PolynomialTools:-Approximate:-Factor command was introduced in Maple 2021.

• 

For more information on Maple 2021 changes, see Updates in Maple 2021.

See Also

factor

RuppertMatrix