RandomTools/GenerateSimilarODE - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : RandomTools/GenerateSimilarODE

RandomTools

  

GenerateSimilarODE

  

create a random differential equation similar to the one given

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

GenerateSimilarODE( eqn )

Parameters

eqn

-

differential equation with one dependent and one independent variable

Description

• 

The GenerateSimilarODE command takes an ordinary differential equation (ODE) eqn with 1 dependent and 1 independent variable and returns a similar ODE in the same variables.

• 

Linear ordinary differential equations with constant coefficients that have order higher than 1 return a linear ordinary differential equations with constant coefficients that have similar roots to the characteristic polynomial of the ODE. Each real root in eqn will have a corresponding real root in the output ODE, each repeated root in eqn will correspond to a repeated root in the output ODE. A pair of complex conjugate roots in eqn will correspond to a pair of complex conjugate roots in the output ODE.

• 

Linear ordinary differential equations with constant coefficients that have order higher than 1 and a forcing function that contains functions that are linearly dependent to the solution of the homogeneous ODE produce an ODE with the similar roots described above and a forcing function that has functions that are linearly dependent to the solutions of the homogeneous output ODE.   

• 

Bessel differential equations or differential equations that can be converted into Bessel differential equations return Bessel differential equations or differential equations that can be converted into Bessel differential equations.

• 

Differential equations that when solved produce terminating Legendre polynomials return differential equations that when solved produce terminating Legendre polynomials.

• 

Differential equations that when solved produce terminating Laguerre polynomials return differential equations that when solved produce terminating Laguerre polynomials.

• 

Chebyshev differential equations produce Chebyshev differential equations.

Examples

withRandomTools:

ODE1%diffyx,xyx+sinx=expxyx

ODE1Typesetting:-_Hold%diffyx,xyx+sinx=ⅇxyx

(1)

GenerateSimilarODEODE1

4Typesetting:-_Hold%diffyx,xyx9Typesetting:-_Hold%cosx=7ⅇ6xyx

(2)

2nd order linear ODE with constant coefficients with a characteristic polynomial that has real roots.

ODE2%diffyx,`$`x,2+%diffyx,x6yx=0

ODE2Typesetting:-_Hold%diffyx,x,x+Typesetting:-_Hold%diffyx,x6yx=0

(3)

dsolveODE2

yx=_C1ⅇ2x+_C2ⅇ3x

(4)

newODE2GenerateSimilarODEODE2

newODE219Typesetting:-_Hold%diffyx,xTypesetting:-_Hold%diffyx,x,x90yx=0

(5)

dsolvenewODE2

yx=_C1ⅇ9x+_C2ⅇ10x

(6)

2nd order linear ODE with constant coefficients with a repeated root.

ODE3%diffyx,`$`x,26%diffyx,x+9yx=0

ODE3Typesetting:-_Hold%diffyx,x,x6Typesetting:-_Hold%diffyx,x+9yx=0

(7)

dsolveODE3

yx=_C1ⅇ3x+_C2ⅇ3xx

(8)

newODE3GenerateSimilarODEODE3

newODE316Typesetting:-_Hold%diffyx,x+Typesetting:-_Hold%diffyx,x,x+64yx=0

(9)

dsolvenewODE3

yx=_C1ⅇ8x+_C2ⅇ8xx

(10)

2nd order linear ODE with a pair of complex conjugate roots.

ODE4%diffyx,`$`x,22%diffyx,x+2yx=0

ODE4Typesetting:-_Hold%diffyx,x,x2Typesetting:-_Hold%diffyx,x+2yx=0

(11)

dsolveODE4

yx=_C1ⅇxsinx+_C2ⅇxcosx

(12)

newODE4GenerateSimilarODEODE4

newODE420Typesetting:-_Hold%diffyx,x+Typesetting:-_Hold%diffyx,x,x+101yx=0

(13)

dsolvenewODE4

yx=_C1ⅇ10xsinx+_C2ⅇ10xcosx

(14)

2nd order linear ODE with forcing function that contains a function that is linearly dependent to a solution to the homogeneous ODE.

ODE5%diffyx,`$`x,2+%diffyx,x6yx=xexp2x

ODE5Typesetting:-_Hold%diffyx,x,x+Typesetting:-_Hold%diffyx,x6yx=xⅇ2x

(15)

dsolveODE5

yx=ⅇ2x_C2+ⅇ3x_C1+xⅇ2x5x250

(16)

newODE5GenerateSimilarODEODE5

newODE518Typesetting:-_Hold%diffyx,xTypesetting:-_Hold%diffyx,x,x80yx=10xⅇ8x

(17)

dsolvenewODE5

yx=ⅇ8x_C2+ⅇ10x_C1+5xx1ⅇ8x2

(18)

Bessel differential equation.

ODE6x2%diffyx,`$`x,2+x%diffyx,x+x2yx=0

ODE6x2Typesetting:-_Hold%diffyx,x,x+xTypesetting:-_Hold%diffyx,x+x2yx=0

(19)

dsolveODE6

yx=_C1BesselJ0,x+_C2BesselY0,x

(20)

newODE6GenerateSimilarODEODE6

newODE6x2Typesetting:-_Hold%diffyx,x,x+xTypesetting:-_Hold%diffyx,x+x236yx=0

(21)

dsolvenewODE6

yx=_C1BesselJ6,x+_C2BesselY6,x

(22)

ODE7x2%diffyx,`$`x,2+x%diffyx,x+x29yx=0

ODE7x2Typesetting:-_Hold%diffyx,x,x+xTypesetting:-_Hold%diffyx,x+x29yx=0

(23)

dsolveODE7

yx=_C1BesselJ3,x+_C2BesselY3,x

(24)

newODE7GenerateSimilarODEODE7

newODE7x2Typesetting:-_Hold%diffyx,x,x+xTypesetting:-_Hold%diffyx,x+x249yx=0

(25)

dsolvenewODE7

yx=_C1BesselJ7,x+_C2BesselY7,x

(26)

ODEs that can be converted to a Bessel differential equation.

ODE8x2%diffyx,`$`x,2+2x%diffyx,x+x2yx=0

ODE8x2Typesetting:-_Hold%diffyx,x,x+2xTypesetting:-_Hold%diffyx,x+x2yx=0

(27)

dsolveODE8

yx=_C1sinxx+_C2cosxx

(28)

newODE8GenerateSimilarODEODE8

newODE8x2Typesetting:-_Hold%diffyx,x,x+3xTypesetting:-_Hold%diffyx,x+x24yx=0

(29)

dsolvenewODE8

yx=_C1BesselJ5,xx+_C2BesselY5,xx

(30)

ODE92x2%diffyx,`$`x,2+x%diffyx,x+x2yx=0

ODE92x2Typesetting:-_Hold%diffyx,x,x+xTypesetting:-_Hold%diffyx,x+x2yx=0

(31)

dsolveODE9

yx=_C1x14BesselJ14,2x2+_C2x14BesselY14,2x2

(32)

newODE9GenerateSimilarODEODE9

newODE95x2Typesetting:-_Hold%diffyx,x,x+xTypesetting:-_Hold%diffyx,x+x24yx=0

(33)

dsolvenewODE9

yx=_C1x25BesselJ265,5x5+_C2x25BesselY265,5x5

(34)

Terminating Laguerre polynomials.

ODE10x%diffyx,`$`x,2+1x%diffyx,x+yx=0

ODE10xTypesetting:-_Hold%diffyx,x,x+x+1Typesetting:-_Hold%diffyx,x+yx=0

(35)

dsolveODE10

yx=_C1x1+_C2x1Ei1x+ⅇx

(36)

newODE10GenerateSimilarODEODE10

newODE10xTypesetting:-_Hold%diffyx,x,x+x+1Typesetting:-_Hold%diffyx,x+2yx=0

(37)

dsolvenewODE10

yx=_C1x24x+2+_C2x24x+2Ei1x4+ⅇxx34

(38)

ODE11x%diffyx,`$`x,2+1x%diffyx,x+5yx=0

ODE11xTypesetting:-_Hold%diffyx,x,x+x+1Typesetting:-_Hold%diffyx,x+5yx=0

(39)

dsolveODE11

yx=_C1x525x4+200x3600x2+600x120+_C2x525x4+200x3600x2+600x120Ei1x14400+ⅇxx424x3+177x2444x+27414400

(40)

newODE11GenerateSimilarODEODE11

newODE11xTypesetting:-_Hold%diffyx,x,x+x+1Typesetting:-_Hold%diffyx,x=0

(41)

dsolvenewODE11

yx=_C1+Ei1x_C2

(42)

Terminating Legendre polynomials.

ODE121x2%diffyx,`$`x,22x%diffyx,x+6yx=0

ODE12x2+1Typesetting:-_Hold%diffyx,x,x2xTypesetting:-_Hold%diffyx,x+6yx=0

(43)

dsolveODE12

yx=_C13x2+1+_C23x2818lnx1+3x28+18lnx+1+3x4

(44)

newODE12GenerateSimilarODEODE12

newODE12x2+1Typesetting:-_Hold%diffyx,x,x2xTypesetting:-_Hold%diffyx,xyxx2+1=0

(45)

dsolvenewODE12

yx=_C1xx2+1+_C2x2+1

(46)

ODE131x2%diffyx,`$`x,22x%diffyx,x+12yx=0

ODE13x2+1Typesetting:-_Hold%diffyx,x,x2xTypesetting:-_Hold%diffyx,x+12yx=0

(47)

dsolveODE13

yx=_C153x3+x+_C215x39xlnx172+15x3+9xlnx+172+5x21219

(48)

newODE13GenerateSimilarODEODE13

newODE13x2+1Typesetting:-_Hold%diffyx,x,x2xTypesetting:-_Hold%diffyx,x+20yx=0

(49)

dsolvenewODE13

yx=_C1353x410x2+1+_C2105x490x2+9lnx11152+105x4+90x29lnx+11152+35x319255x576

(50)

Chebyshev differential equation.

ODE141x2%diffyx,`$`x,2x%diffyx,x+25yx=0

ODE14x2+1Typesetting:-_Hold%diffyx,x,xxTypesetting:-_Hold%diffyx,x+25yx=0

(51)

dsolveODE14

yx=_C1x+x215+_C2x+x215

(52)

newODE14GenerateSimilarODEODE14

newODE14x2+1Typesetting:-_Hold%diffyx,x,xxTypesetting:-_Hold%diffyx,x+36yx=0

(53)

dsolvenewODE14

yx=_C1x+x216+_C2x+x216

(54)

Compatibility

• 

The RandomTools[GenerateSimilarODE] command was introduced in Maple 2021.

• 

For more information on Maple 2021 changes, see Updates in Maple 2021.

See Also

HowDoI,WorkWithRandomGenerators

InertForm

rand

RandomTools

RandomTools[Generate]

RandomTools[GenerateSimilar]

randpoly