Overview - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Student[ODEs]

  

ODESteps

  

Show a step-by-step solution process for ODEs, IVPs, or systems

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

ODESteps(ODE)

ODESteps(ODE, y(x))

ODESteps(sys)

Parameters

ODE

-

an ordinary differential equation

y

-

name ; the dependent variable

x

-

name ; the independent variable

sys

-

set ; an ODE system including initial values

Description

• 

The ODESteps() command solves an ordinary differential equation (ODE) or system of ODEs.

• 

The input may include a corresponding set of initial values, which would make it an initial value problem (IVP).

• 

The output shows a series of steps in the solving process.

• 

The following types of ODEs and ODE systems and/or solving methods are considered:

Cauchy-Euler Equations

First Order IVPs

First Order ODEs

Second Order IVPs

Second Order ODEs

Series Solutions

Special Function Solutions

Systems of ODEs

Systems of ODEs with IVP

 

 

 

Examples

withStudentODEs:

A first order ODE:

ode1t2zt+1+zt2t1ⅆⅆtzt=0

ode1t2zt+1+zt2t1ⅆⅆtzt=0

(1)

ODEStepsode1

Let's solvet2zt+1+zt2t1ⅆⅆtzt=0Highest derivative means the order of the ODE is1ⅆⅆtztSeparate variablesⅆⅆtztzt2zt+1=t2t1Integrate both sides with respect totⅆⅆtztzt2zt+1ⅆt=t2t1ⅆt+C1Evaluate integralzt22zt+lnzt+1=t22tlnt1+C1

(2)

A first order IVP:

ivp1t2zt+1+zt2t1ⅆⅆtzt=0,z3=1

ivp1t2zt+1+zt2t1ⅆⅆtzt=0,z3=1

(3)

ODEStepsivp1

Let's solvet2zt+1+zt2t1ⅆⅆtzt=0,z3=1Highest derivative means the order of the ODE is1ⅆⅆtztSeparate variablesⅆⅆtztzt2zt+1=t2t1Integrate both sides with respect totⅆⅆtztzt2zt+1ⅆt=t2t1ⅆt+C1Evaluate integralzt22zt+lnzt+1=t22tlnt1+C1Use initial conditionz3=112+ln2=152ln2+C1Solve for_C1C1=7+2ln2Substitute_C1=7+2ln2into general solution and simplifyzt22zt+lnzt+1=t22tlnt1+7+2ln2Solution to the IVPzt22zt+lnzt+1=t22tlnt1+7+2ln2

(4)

A second order ODE:

ode22xⅆⅆxyx9x2+2ⅆⅆxyx+x2+1ⅆ2ⅆx2yx=0

ode22xⅆⅆxyx9x2+2ⅆⅆxyx+x2+1ⅆ2ⅆx2yx=0

(5)

ODEStepsode2

Let's solve2xⅆⅆxyx9x2+2ⅆⅆxyx+x2+1ⅆ2ⅆx2yx=0Highest derivative means the order of the ODE is2ⅆ2ⅆx2yxMake substitutionu=ⅆⅆxyxto reduce order of ODE2xux9x2+2ux+x2+1ⅆⅆxux=0Check if ODE is exactODE is exact if the lhs is the total derivative of aC2function=0Compute derivative of lhsxFx,u+uFx,uⅆⅆxux=0Evaluate derivatives2x=2xCondition met, ODE is exactExact ODE implies solution will be of this formFx,u=C1,Mx,u=xFx,u,Nx,u=uFx,uSolve forFx,uby integratingMx,uwith respect toxFx,u=+_F1uEvaluate integralFx,u=x2u3x3+_F1uTake derivative ofFx,uwith respect touNx,u=uFx,uCompute derivativex2+2u+1=x2+ⅆⅆu_F1uIsolate forⅆⅆu_F1uⅆⅆu_F1u=2u+1Solve for_F1u_F1u=u2+uSubstitute_F1uinto equation forFx,uFx,u=x2u3x3+u2+uSubstituteFx,uinto the solution of the ODEx2u3x3+u2+u=C1Solve foruxux=x2212x4+12x3+2x2+4C1+12,ux=x2212+x4+12x3+2x2+4C1+12Solve 1st ODE foruxux=x2212x4+12x3+2x2+4C1+12Make substitutionu=ⅆⅆxyxⅆⅆxyx=x2212x4+12x3+2x2+4C1+12Integrate both sides to solve foryxⅆⅆxyxⅆx=x2212x4+12x3+2x2+4C1+12ⅆx+C2Compute lhsyx=x2212x4+12x3+2x2+4C1+12ⅆx+C2Solve 2nd ODE foruxux=x2212+x4+12x3+2x2+4C1+12Make substitutionu=ⅆⅆxyxⅆⅆxyx=x2212+x4+12x3+2x2+4C1+12Integrate both sides to solve foryxⅆⅆxyxⅆx=x2212+x4+12x3+2x2+4C1+12ⅆx+C2Compute lhsyx=x2212+x4+12x3+2x2+4C1+12ⅆx+C2

(6)

A second order IVP:

ivp2ⅆ2ⅆx2yxⅆⅆxyxxⅇx=0,ⅆⅆxyxx=0|ⅆⅆxyxx=0=0,y0=1

ivp2ⅆ2ⅆx2yxⅆⅆxyxxⅇx=0,ⅆⅆxyxx=0|ⅆⅆxyxx=0=0,y0=1

(7)

ODEStepsivp2

Let's solveⅆ2ⅆx2yxⅆⅆxyxxⅇx=0,ⅆⅆxyxx=0|ⅆⅆxyxx=0=0,y0=1Highest derivative means the order of the ODE is2ⅆ2ⅆx2yxIsolate 2nd derivativeⅆ2ⅆx2yx=ⅆⅆxyx+xⅇxGroup terms withyxon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ2ⅆx2yxⅆⅆxyx=xⅇxCharacteristic polynomial of homogeneous ODEr2r=0Factor the characteristic polynomialrr1=0Roots of the characteristic polynomialr=0,11st solution of the homogeneous ODEy1x=12nd solution of the homogeneous ODEy2x=ⅇxGeneral solution of the ODEyx=C1y1x+C2y2x+ypxSubstitute in solutions of the homogeneous ODEyx=C1+C2ⅇx+ypxFind a particular solutionypxof the ODEUse variation of parameters to findypherefxis the forcing functionypx=y1xy2xf