Student[ODEs][Solve]
HighOrder
Solve a high order ODE
Calling Sequence
Parameters
Description
Examples
Compatibility
HighOrder(ODE, y(x))
ODE
-
a high order ordinary differential equation
y
name; the dependent variable
x
name; the independent variable
The HighOrder(ODE, y(x)) command finds the solution of a high order ODE, i.e. where the order is greater than 2.
with⁡StudentODEsSolve:
ode1≔x3⁢diff⁡y⁡x,x,x,x+3⁢x2⁢diff⁡y⁡x,x,x−6⁢x⁢diff⁡y⁡x,x−6⁢y⁡x=0
ode1≔x3⁢ⅆ3ⅆx3y⁡x+3⁢x2⁢ⅆ2ⅆx2y⁡x−6⁢x⁢ⅆⅆxy⁡x−6⁢y⁡x=0
IC≔eval⁡diff⁡y⁡x,x,x,x=1=−1,eval⁡diff⁡y⁡x,x,x=1=1,y⁡1=2
IC≔ⅆ2ⅆx2y⁡xx=1|ⅆ2ⅆx2y⁡xx=1=−1,ⅆⅆxy⁡xx=1|ⅆⅆxy⁡xx=1=1,y⁡1=2
HighOrder⁡ode1,y⁡x
y⁡x=3⁢_C2⁢x3−_C1x−2⁢_C3x2
HighOrder⁡ode1,y⁡x,ICs=IC
y⁡x=7⁢x320+134⁢x−85⁢x2
ode2≔diff⁡y⁡x,x,x,x+3⁢diff⁡y⁡x,x,x+4⁢diff⁡y⁡x,x+2⁢y⁡x=0
ode2≔ⅆ3ⅆx3y⁡x+3⁢ⅆ2ⅆx2y⁡x+4⁢ⅆⅆxy⁡x+2⁢y⁡x=0
HighOrder⁡ode2,y⁡x
y⁡x=−ⅇ−x⁢_C2+_C3⁢sin⁡x+_C2−_C3⁢cos⁡x+_C1
HighOrder⁡ode2,y⁡x,ICs=IC
y⁡x=−ⅇ−x⁢3⁢sin⁡1ⅇ−1⁢cos⁡12+sin⁡12−3⁢cos⁡1ⅇ−1⁢cos⁡12+sin⁡12⁢sin⁡x+3⁢sin⁡1ⅇ−1⁢cos⁡12+sin⁡12+3⁢cos⁡1ⅇ−1⁢cos⁡12+sin⁡12⁢cos⁡x−5ⅇ−1
The Student[ODEs][Solve][HighOrder] command was introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021.
See Also
dsolve
Student
Student[ODEs]
Student[ODEs][DifferentialOrder]
Download Help Document
What kind of issue would you like to report? (Optional)