Student[ODEs][Solve]
LinearConstantCoefficients
Solve a linear ODE with constant coefficients
Calling Sequence
Parameters
Description
Examples
Compatibility
LinearConstantCoefficients(ODE, y(x))
ODE
-
a linear ordinary differential equation with constant coefficients
y
name; the dependent variable
x
name; the independent variable
The LinearConstantCoefficients(ODE, y(x)) command finds the solution of a linear ODE with constant coefficients.
with⁡StudentODEsSolve:
ode1≔diff⁡y⁡x,x−6⁢y⁡x=0
ode1≔ⅆⅆxy⁡x−6⁢y⁡x=0
LinearConstantCoefficients⁡ode1,y⁡x
y⁡x=_C1⁢ⅇ6⁢x
ode2≔diff⁡y⁡x,x,x−diff⁡y⁡x,x−6⁢y⁡x=0
ode2≔ⅆ2ⅆx2y⁡x−ⅆⅆxy⁡x−6⁢y⁡x=0
LinearConstantCoefficients⁡ode2,y⁡x
y⁡x=_C1⁢ⅇ3⁢x+_C2⁢ⅇ−2⁢x
ode3≔diff⁡y⁡x,x,x−diff⁡y⁡x,x−6⁢y⁡x=x2
ode3≔ⅆ2ⅆx2y⁡x−ⅆⅆxy⁡x−6⁢y⁡x=x2
LinearConstantCoefficients⁡ode3,y⁡x
y⁡x=_C1⁢ⅇ3⁢x+_C2⁢ⅇ−2⁢x−x26+x18−7108
ode4≔diff⁡y⁡x,x,x+4⁢y⁡x+4⁢diff⁡y⁡x,x=0
ode4≔ⅆ2ⅆx2y⁡x+4⁢y⁡x+4⁢ⅆⅆxy⁡x=0
LinearConstantCoefficients⁡ode4,y⁡x
y⁡x=_C1⁢ⅇ−2⁢x+_C2⁢x⁢ⅇ−2⁢x
ode5≔diff⁡y⁡x,x,x+4⁢y⁡x+4⁢diff⁡y⁡x,x=−3⁢sin⁡x
ode5≔ⅆ2ⅆx2y⁡x+4⁢y⁡x+4⁢ⅆⅆxy⁡x=−3⁢sin⁡x
LinearConstantCoefficients⁡ode5,y⁡x
y⁡x=_C1⁢ⅇ−2⁢x+_C2⁢x⁢ⅇ−2⁢x+12⁢cos⁡x25−9⁢sin⁡x25
ode6≔diff⁡y⁡x,x,x+2⁢y⁡x+2⁢diff⁡y⁡x,x=0
ode6≔ⅆ2ⅆx2y⁡x+2⁢y⁡x+2⁢ⅆⅆxy⁡x=0
LinearConstantCoefficients⁡ode6,y⁡x
y⁡x=_C1⁢ⅇ−x⁢sin⁡x+_C2⁢ⅇ−x⁢cos⁡x
ode7≔diff⁡y⁡x,x,x+2⁢y⁡x−2⁢diff⁡y⁡x,x=exp⁡x
ode7≔ⅆ2ⅆx2y⁡x+2⁢y⁡x−2⁢ⅆⅆxy⁡x=ⅇx
LinearConstantCoefficients⁡ode7,y⁡x
y⁡x=_C1⁢ⅇx⁢sin⁡x+_C2⁢ⅇx⁢cos⁡x+ⅇx
ode7≔−diff⁡y⁡x,x,x,x+diff⁡y⁡x,x,x−y⁡x+diff⁡y⁡x,x=exp⁡x
ode7≔−ⅆ3ⅆx3y⁡x+ⅆ2ⅆx2y⁡x−y⁡x+ⅆⅆxy⁡x=ⅇx
y⁡x=_C1⁢ⅇ−x+_C2⁢ⅇx+_C3⁢x⁢ⅇx+ⅇx⁢2⁢x2−2⁢x+18
The Student[ODEs][Solve][LinearConstantCoefficients] command was introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021.
See Also
dsolve
Student
Student[ODEs]
Student[ODEs][Solve][FirstOrderLinear]
Student[ODEs][Solve][SecondOrderLinear]
Download Help Document
What kind of issue would you like to report? (Optional)