SumTools[Hypergeometric]
MinimalZpair
compute the minimal Z-pair
MinimalTelescoper
compute the minimal telescoper
Calling Sequence
Parameters
Description
Examples
References
MinimalZpair(T, n, k, En)
MinimalTelescoper(T, n, k, En)
T
-
hypergeometric term of n and k
n
name
k
En
name; denote the shift operator with respect to n
For a specified hypergeometric term Tn,k of n and k, MinimalZpair(T, n, k, En) constructs for Tn,k the minimal Z-pair L,G; MinimalTelescoper(T, n, k, En) constructs for Tn,k the minimal telescoper L.
L and G satisfy the following properties:
1. L is a linear recurrence operator in En with polynomial coefficients in n.
2. G is a hypergeometric term of n and k.
3. LT=Ek−1G, where Ek denotes the shift operator with respect to k.
4. The order of L w.r.t. En is minimal.
The execution steps of MinimalZpair can be described as follows.
1. Determine the applicability of Zeilberger's algorithm to Tn,k.
2. If it is proven in Step 1 that a Z-pair for Tn,k does not exist, return the conclusive error message ``Zeilberger's algorithm is not applicable''. Otherwise,
a. If Tn,k is a rational function in n and k, apply the direct algorithm to compute the minimal Z-pair for Tn,k.
b. If Tn,k is a nonrational term, first compute a lower bound u for the order of the telescopers for Tn,k. Then compute the minimal Z-pair using Zeilberger's algorithm with u as the starting value for the guessed orders.
For case 2b, since the term T2 in the additive decomposition T1,T2 of T is ``simpler'' than T in some sense, we first apply Zeilberger's algorithm to T2 to obtain the minimal Z-pair L,G for T2. It is easy to show that L,LT1+G is the minimal Z-pair for the input term T.
withSumToolsHypergeometric:
Case 1: Zeilberger's algorithm is not applicable to the input term T.
T≔−1k⋅1nk+1binomialn+1,kbinomial2n−2k−1,n−1
T≔−1kn+1k2n−2k−1n−1nk+1
MinimalZpairT,n,k,En
Error, (in SumTools:-Hypergeometric:-MinimalZpair) Zeilberger's algorithm is not applicable
Case 2a: Rational Function
T≔13n+20k+23
En20−1,13n+42+20k3+13n+20k+223+13n+20k+23
Case 2b: Hypergeometric
T≔1nk+1−1n−2k−42n+k+4!−1nk−1n−2k−22n+k+3!+1n−2k−22n+k+3!
T≔1nk+1−1n−4−2k2n+k+4!−1nk−1n−2k−22n+k+3!+1n−2k−22n+k+3!
Zpair≔MinimalZpairT,n,k,En:
Zpair1
−1953125n9−44140625n8−438125000n7−2505718750n6−9095640625n5−21719685625n4−34096450250n3−33905768600n2−19362572120n−4833216960En3+1953125n9+42187500n8+400625000n7+2194468750n6+7637609375n5+17505613750n4+26405971500n3+25257742600n2+13888257120n+3340995840En2+20000n4+152000n3+422400n2+508160n+223232En−20000n4−232000n3−998400n2−1888960n−1325792
T≔1n2+9nk−4n−22k2+21k−5
T≔1−22k2+9nk+n2+21k−4n−5
MinimalTelescoperT,n,k,En
−13n−1+−14−13nEn+144+13nEn11+157+13nEn12
Abramov, S.A.; Geddes, K.O.; and Le, H.Q. "Computer Algebra Library for the Construction of the Minimal Telescopers." Proceedings ICMS'2002, pp. 319- 329. World Scientific, 2002.
See Also
SumTools[Hypergeometric][IsZApplicable]
SumTools[Hypergeometric][LowerBound]
SumTools[Hypergeometric][Zeilberger]
SumTools[Hypergeometric][ZpairDirect]
Download Help Document