PolynomialNormalForm - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


SumTools[Hypergeometric]

  

PolynomialNormalForm

  

construct the polynomial normal form of a rational function

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

PolynomialNormalForm(F, n)

Parameters

F

-

rational function of n

n

-

variable

Description

• 

Let F be a rational function of n over a field K of characteristic 0. The PolynomialNormalForm(F,n) command constructs the polynomial normal form for F.

• 

The output is a sequence of 4 elements z,a,b,c where z is an element of K, and a,b,c are monic polynomials over K such that: F=zaEcbc.  gcda,Ekb=1for allnonnegative integersk. gcda,c=1,gcdb,Ec=1.

  

Note: E is the automorphism of K(n) defined by {E(F(n)) = F(n+1)}.

Examples

withSumToolsHypergeometric:

F32nn+23n+23n+4n12n+9n+42

F3nn+23n+23n+42n12n+9n+42

(1)

z,a,b,cPolynomialNormalFormF,n

z,a,b,c274,n+2n+23n+43,n+92n+42,n1

(2)

Check the results.

Condition 1 is satisfied.

evalbF=normalzabsubsn=n+1,cc

true

(3)

Condition 2 is satisfied.

LREtoolsdispersionb,a,n

FAIL

(4)

Condition 3 is satisfied.

gcda,c,gcdb,subsn=n+1,c

1,1

(5)

References

  

Gosper, R.W., Jr. "Decision procedure for indefinite hypergeometric summation." Proc. Natl. Acad. Sci. USA. Vol. 75. (1977): 40-42.

  

Petkovsek, M. "Hypergeometric solutions of linear recurrences with polynomial coefficients." J. Symb. Comput. Vol. 14. (1992): 243-264.

See Also

evalb

LREtools[dispersion]

subs

SumTools[Hypergeometric]

SumTools[Hypergeometric][Gosper]

SumTools[Hypergeometric][RationalCanonicalForm]