Iterated Triple Integral in Cylindrical Coordinates
Description
Compute the iterated triple integral in cylindrical coordinates.
Integrand:
z
Region: z1r,θ≤z≤z2r,θ,r1θ≤r≤r2θ,a≤θ≤b
z1r,θ
r
z2r,θ
1
r1θ
0
r2θ
a
b
2 π
2⁢π
Inert Integral: dz dr dθ
(Note automatic insertion of Jacobian.)
StudentMultivariateCalculusMultiInt,z=..,r=..,θ=..,coordinates=cylindricalr,θ,z,output=integral
∫02⁢π∫01∫r1z⁢rⅆzⅆrⅆθ
Value:
StudentMultivariateCalculusMultiInt,z=..,r=..,θ=..,coordinates=cylindricalr,θ,z
14⁢π
Stepwise Evaluation:
StudentMultivariateCalculusMultiInt,z=..,r=..,θ=..,coordinates=cylindricalr,θ,z,output=steps
∫02⁢π∫01∫r1z⁢rⅆzⅆrⅆθ=∫02⁢π∫01z2⁢r2z=r..1|z2⁢r2z=r..1ⅆrⅆθ=∫02⁢π∫01r⁢1−r22ⅆrⅆθ=∫02⁢π−18⁢r4+14⁢r2r=0..1|−18⁢r4+14⁢r2r=0..1ⅆθ=∫02⁢π18ⅆθ=θ8θ=0..2⁢π|θ8θ=0..2⁢π
Commands Used
Student[MultivariateCalculus][MultiInt]
See Also
Student[MultivariateCalculus], VectorCalculus[int]
Download Help Document
What kind of issue would you like to report? (Optional)