Iterated Triple Integral in Cartesian Coordinates
Description
Calculate the iterated triple integral in Cartesian coordinates.
Iterated Triple Integrals in Cartesian Coordinates
Integrand:
x y z
x⁢y⁢z
Region: z1x,y≤z≤z2x,y,y1x≤y≤y2x,a≤x≤b
z1x,y
1−x−y
z2x,y
10−x2−y2
y1x
x2
y2x
x
a
0
b
1
Inert Integral: dz dy dx
StudentMultivariateCalculusMultiInt,z=..,y=..,x=..,output=integral
∫01∫x2x∫1−x−y10−x2−y2x⁢y⁢zⅆzⅆyⅆx
Value:
StudentMultivariateCalculusMultiInt,z=..,y=..,x=..
2608115120
Stepwise Evaluation:
StudentMultivariateCalculusMultiInt,z=..,y=..,x=..,output=steps
∫01∫x2x∫1−x−y10−x2−y2x⁢y⁢zⅆzⅆyⅆx=∫01∫x2xx⁢y⁢z22z=1−x−y..10−x2−y2|x⁢y⁢z22z=1−x−y..10−x2−y2ⅆyⅆx=∫01∫x2xx⁢y⁢10−x2−y22−1−x−y22ⅆyⅆx=∫01x⁢y66+−21+2⁢x2⁢y44+2−2⁢x⁢y33+10−x22−1−x2⁢y222y=x2..x|x⁢y66+−21+2⁢x2⁢y44+2−2⁢x⁢y33+10−x22−1−x2⁢y222y=x2..xⅆx=∫01x⁢x6−x1212+x⁢−21+2⁢x2⁢x4−x88+x⁢2−2⁢x⁢x3−x66+x⁢10−x22−1−x2⁢x2−x44ⅆx=−1168⁢x14+1116⁢x8−148⁢x12+1980⁢x10−791144⁢x6+127⁢x9+16⁢x5−114⁢x7+9916⁢x4x=0..1|−1168⁢x14+1116⁢x8−148⁢x12+1980⁢x10−791144⁢x6+127⁢x9+16⁢x5−114⁢x7+9916⁢x4x=0..1
Commands Used
Student[MultivariateCalculus][MultiInt]
See Also
Student[MultivariateCalculus], VectorCalculus[int]
Download Help Document
What kind of issue would you like to report? (Optional)