Overloaded Functions in the Natural Units Environment

Description

 • In the Natural Units environment, the following functions are overloaded with functions that remove units from their primary argument, call the appropriate global function, and then multiply the result by the unit. The primary argument can be the first argument, as in $\mathrm{expand}\left(3x\left(1-x\right)m\right)$ or a subsequent argument, such as $\mathrm{abs}\left(1,3.3213m\right)$ where the first argument is used to denote the derivative.

 abs argument ceil collect combine conjugate csgn evalc evalr expand factor floor frac Im normal Re round seq shake signum simplify trunc

Examples

 > $\mathrm{with}\left({\mathrm{Units}}_{\mathrm{Natural}}\right):$
 > $3Wx\left(1-x\right)$
 ${3}{}\left({1}{-}{x}\right){}{x}{}⟦{W}⟧$ (1)
 > $\mathrm{expand}\left(\right)$
 $\left({-}{3}{}{{x}}^{{2}}{+}{3}{}{x}\right){}⟦{W}⟧$ (2)
 > $\mathrm{factor}\left(\right)$
 ${-}{3}{}{x}{}\left({x}{-}{1}\right){}⟦{W}⟧$ (3)
 > $\mathrm{assume}\left(0
 > $2\mathrm{ln}\left(y\right)m-\mathrm{ln}\left(z\right)\mathrm{ft}$
 $\left({2}{}{\mathrm{ln}}{}\left({\mathrm{y~}}\right){-}\frac{{381}{}{\mathrm{ln}}{}\left({\mathrm{z~}}\right)}{{1250}}\right){}⟦{m}⟧$ (4)
 > $\mathrm{combine}\left(,\mathrm{ln}\right)$
 ${\mathrm{ln}}{}\left(\frac{{{\mathrm{y~}}}^{{2}}}{{{\mathrm{z~}}}^{\frac{{381}}{{1250}}}}\right){}⟦{m}⟧$ (5)