VectorCalculus
GetPVDescription
return a description of a position Vector in a specified coordinate system.
Calling Sequence
Parameters
Description
Examples
GetPVDescription(pvector)
GetPVDescription(pvector, c)
pvector
-
Vector; the position Vector
c
name or name[name, name, ...]; specify the coordinate system, optionally indexed by the coordinate names
The GetPVDescription returns a list with the description of pvector in c coordinates.
If no coordinate argument is provided, the description of pvector is given with respect to the current coordinate system as long as the dimensions match.
The position Vector is always a cartesian Vector rooted at the origin, but its description varies with the choice of coordinates. For more details about position Vectors, see VectorCalculus,Details
with(VectorCalculus):
pv := PositionVector([p*cos(p), p*sin(p)], cartesian[x,y]);
pv≔p⁢cos⁡pp⁢sin⁡p
M :=GetPVDescription(pv,polar[r,t]);
M≔p2⁢cos⁡p2+p2⁢sin⁡p2,arctan⁡p⁢sin⁡p,p⁢cos⁡p
pv2 := PositionVector(M,polar[r,t]);
pv2≔p⁢cos⁡pp⁢sin⁡p
c := arctan(u);
c≔arctan⁡u
pv3 := PositionVector([cos(u)*cos(c), sin(u)*cos(c), -sin(c)], cartesian[x,y,z]);
pv3≔cos⁡uu2+1sin⁡uu2+1−uu2+1
M := GetPVDescription(pv3, spherical[r,p,t]);
M≔cos⁡u2u2+1+sin⁡u2u2+1+u2u2+1,arctan⁡cos⁡u2u2+1+sin⁡u2u2+1,−uu2+1,arctan⁡sin⁡uu2+1,cos⁡uu2+1
simplify(M) assuming u::real;
1,arctan⁡1,−u,arctan⁡sin⁡u,cos⁡u
See Also
VectorCalculus[About]
VectorCalculus[PlotPositionVector]
VectorCalculus[PositionVector]
Download Help Document
What kind of issue would you like to report? (Optional)