VectorCalculus - Maple Programming Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Vector Calculus : VectorCalculus/GetPVDescription

VectorCalculus

  

GetPVDescription

  

return a description of a position Vector in a specified coordinate system.

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

GetPVDescription(pvector)

GetPVDescription(pvector, c)

Parameters

pvector

-

Vector; the position Vector

c

-

name or name[name, name, ...]; specify the coordinate system, optionally indexed by the coordinate names

Description

• 

The GetPVDescription returns a list with the description of pvector in c coordinates.

• 

If no coordinate argument is provided, the description of pvector is given with respect to the current coordinate system as long as the dimensions match.

• 

The position Vector is always a cartesian Vector rooted at the origin, but its description varies with the choice of coordinates. For more details about position Vectors, see VectorCalculus,Details

Examples

with(VectorCalculus):

pv := PositionVector([p*cos(p), p*sin(p)], cartesian[x,y]);

pvpcosppsinp

(1)

M :=GetPVDescription(pv,polar[r,t]);

Mp2cosp2+p2sinp2,arctanpsinp,pcosp

(2)

pv2 := PositionVector(M,polar[r,t]);

pv2pcosppsinp

(3)

c := arctan(u);

carctanu

(4)

pv3 := PositionVector([cos(u)*cos(c), sin(u)*cos(c), -sin(c)], cartesian[x,y,z]);

pv3cosuu2+1sinuu2+1uu2+1

(5)

M := GetPVDescription(pv3, spherical[r,p,t]);

Mcosu2u2+1+sinu2u2+1+u2u2+1,arctancosu2u2+1+sinu2u2+1,uu2+1,arctansinuu2+1,cosuu2+1

(6)

simplify(M) assuming u::real;

1,arctan1,u,arctansinu,cosu

(7)

See Also

VectorCalculus

VectorCalculus[About]

VectorCalculus[PlotPositionVector]

VectorCalculus[PositionVector]