powcos - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

powseries

 powcos
 compute the formal power series equal to the cosine of an expression

 Calling Sequence powcos(p)

Parameters

 p - formal power series, polynomial, or any function that is acceptable for power series package

Description

 • The function powcos(p) returns the formal power series that is equivalent to cos(p).
 • The powseries function evalpow accepts the form in either powcos, Cos, or cos.
 • The command with(powseries,powcos) allows the use of the abbreviated form of this command.

Examples

 > $\mathrm{with}\left(\mathrm{powseries}\right):$
 > $a≔\mathrm{powcos}\left(x+1\right):$
 > $b≔\mathrm{tpsform}\left(a,x,5\right)$
 ${b}{≔}{\mathrm{cos}}{}\left({1}\right){-}{\mathrm{sin}}{}\left({1}\right){}{x}{-}\frac{{1}}{{2}}{}{\mathrm{cos}}{}\left({1}\right){}{{x}}^{{2}}{+}\frac{{1}}{{6}}{}{\mathrm{sin}}{}\left({1}\right){}{{x}}^{{3}}{+}\frac{{1}}{{24}}{}{\mathrm{cos}}{}\left({1}\right){}{{x}}^{{4}}{+}{O}{}\left({{x}}^{{5}}\right)$ (1)
 > $c≔\mathrm{evalpow}\left(\mathrm{Cos}\left(\mathrm{log}\left(1+x\right)\right)\right):$
 > $d≔\mathrm{tpsform}\left(c,x,5\right)$
 ${d}{≔}{1}{-}\frac{{1}}{{2}}{}{{x}}^{{2}}{+}\frac{{1}}{{2}}{}{{x}}^{{3}}{-}\frac{{5}}{{12}}{}{{x}}^{{4}}{+}{O}{}\left({{x}}^{{5}}\right)$ (2)
 > $e≔\mathrm{powdiff}\left(\mathrm{powcos}\left(x\right)\right):$
 > $f≔\mathrm{tpsform}\left(e,x,6\right)$
 ${f}{≔}{-}{x}{+}\frac{{1}}{{6}}{}{{x}}^{{3}}{-}\frac{{1}}{{120}}{}{{x}}^{{5}}{+}{O}{}\left({{x}}^{{6}}\right)$ (3)
 > $g≔\mathrm{evalpow}\left(\mathrm{tan}\left({x}^{2}\right)\right):$
 > $h≔\mathrm{tpsform}\left(g,x,10\right)$
 ${h}{≔}{{x}}^{{2}}{+}\frac{{1}}{{3}}{}{{x}}^{{6}}{+}{O}{}\left({{x}}^{{10}}\right)$ (4)