Special Function Solutions - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

ODE Steps for Special Function Solutions

 

Overview

Examples

Overview

• 

This help page gives a few examples of using the command ODESteps to solve ordinary differential equations in terms of special functions.

• 

See Student[ODEs][ODESteps] for a general description of the command ODESteps and its calling sequence.

Examples

withStudent:-ODEs:

ode1x2diffyx,x,x+4xdiffyx,x+25x29yx=0

ode1x2ⅆ2ⅆx2yx+4xⅆⅆxyx+25x29yx=0

(1)

ODEStepsode1

Let's solvex2ⅆ2ⅆx2yx+4xⅆⅆxyx+25x29yx=0Highest derivative means the order of the ODE is2ⅆ2ⅆx2yxIsolate 2nd derivativeⅆ2ⅆx2yx=25x29yxx24ⅆⅆxyxxGroup terms withyxon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ2ⅆx2yx+4ⅆⅆxyxx+25x29yxx2=0Simplify ODEx2ⅆ2ⅆx2yx+25yxx2+4xⅆⅆxyx9yx=0Make a change of variablest=5xComputeⅆⅆxyxⅆⅆxyx=5ⅆⅆtytCompute second derivativeⅆ2ⅆx2yx=25ⅆ2ⅆt2ytApply change of variables to the ODEt2ⅆ2ⅆt2yt+ytt2+4tⅆⅆtyt9yt=0Make a change of variablesyt=utt32Computeⅆⅆtytⅆⅆtyt=3ut2t52+ⅆⅆtutt32Computeⅆ2ⅆt2ytⅆ2ⅆt2yt=15ut4t723ⅆⅆtutt52+ⅆ2ⅆt2utt32Apply change of variables to the ODEutt2+ⅆ2ⅆt2utt2+ⅆⅆtutt45ut4=0ODE is now of the Bessel formSolution to Bessel ODEut=C1BesselJ352,t+C2BesselY352,tMake the change fromyxback toytyt=C1BesselJ352,t+C2BesselY352,tt32Make the change fromtback toxyx=C1BesselJ352,5x+C2BesselY352,5x525x32

(2)

ode2x2+1diffyx,x,xxdiffyx,x+yx=0

ode2x2+1ⅆ2ⅆx2yxxⅆⅆxyx+yx=0

(3)

ODEStepsode2

Let's solvex2+1ⅆ2ⅆx2yxxⅆⅆxyx+yx=0Highest derivative means the order of the ODE is2ⅆ2ⅆx2yxIsolate 2nd derivativeⅆ2ⅆx2yx=yxx21xⅆⅆxyxx21Group terms withyxon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ2ⅆx2yx+xⅆⅆxyxx21yxx21=0Multiply by denominators of ODEx2+1ⅆ2ⅆx2yxxⅆⅆxyx+yx=0Make a change of variablesθ=arccosxCalculateⅆⅆxyxwith change of variablesⅆⅆxyx=ⅆⅆθyθⅆⅆxθxCompute1stderivativeⅆⅆxyxⅆⅆxyx=ⅆⅆθyθx2+1Calculateⅆ2ⅆx2yxwith change of variablesⅆ2ⅆx2yx=ⅆ2ⅆθ2yθⅆⅆxθx2+ⅆ2ⅆx2θxⅆⅆθyθCompute2ndderivativeⅆ2ⅆx2yxⅆ2ⅆx2yx=ⅆ2ⅆθ2yθx2+1xⅆⅆθyθx2+132Apply the change of variables to the ODEx2+1ⅆ2ⅆθ2yθx2+1xⅆⅆθyθx2+132+xⅆⅆθyθx2+1+yx=0Multiply throughⅆ2ⅆθ2yθx2x2+1+ⅆ2ⅆθ2yθx2+1+x3ⅆⅆθyθx2+132xⅆⅆθyθx2+132+xⅆⅆθyθx2+1+yx=0Simplify ODEⅆ2ⅆθ2yθ+yx=0ODE is that of a harmonic oscillator with given general solutionyθ=C1sinθ+C2cosθRevert back toxyx=C1sinarccosx+C2cosarccosxUse trig identity to simplifysinarccosxsinarccosx=x2+1Simplify solution to the ODEyx=C1x2+1+C2x

(4)

ode3x2+1diffyx,x,xxdiffyx,x+4yx=0

ode3x2+1ⅆ2ⅆx2yxxⅆⅆxyx+4yx=0

(5)

ODEStepsode3

Let's solvex2+1ⅆ2ⅆx2yxxⅆⅆxyx+4yx=0Highest derivative means the order of the ODE is2ⅆ2ⅆx2yxIsolate 2nd derivativeⅆ2ⅆx2yx=4yxx21xⅆⅆxyxx21Group terms withyxon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ2ⅆx2yx+xⅆⅆxyxx214yxx21=0Multiply by denominators of ODEx2+1ⅆ2ⅆx2yxxⅆⅆxyx+4yx=0Make a change of variablesθ=arccosxCalculateⅆⅆxyxwith change of variablesⅆⅆxyx=ⅆⅆθyθⅆⅆxθxCompute1stderivativeⅆⅆxyxⅆⅆxyx=ⅆⅆθyθx2+1Calculateⅆ2ⅆx2yxwith change of variablesⅆ2ⅆx2yx=ⅆ2ⅆθ2yθⅆⅆxθx2+ⅆ2ⅆx2θxⅆⅆθyθCompute2ndderivativeⅆ2ⅆx2yxⅆ2ⅆx2yx=ⅆ2ⅆθ2yθx2+1xⅆⅆθyθx2+132Apply the change of variables to the ODEx2+1ⅆ2ⅆθ2yθx2+1xⅆⅆθyθx2+132+xⅆⅆθyθx2+1+4yx=0Multiply throughⅆ2ⅆθ2yθx2x2+1+ⅆ2ⅆθ2yθx2+1+x3ⅆⅆθyθx2+132xⅆⅆθyθx2+132+xⅆⅆθyθx2+1+4yx=0Simplify ODEⅆ2ⅆθ2yθ+4yx=0ODE is that of a harmonic oscillator with given general solutionyθ=C1sin2θ+C2cos2θRevert back toxyx=C1sin2arccosx+C2cos2arccosxApply double angle identities to solutionyx=C1sinarccosxcosarccosx+C22cosarccosx21Use trig identity to simplify sinsinarccosx=x2+1Simplify solution to the ODEyx=C1xx2+1+C22x21

(6)

ode4x2+1diffyx,x,xxdiffyx,x+9yx=0

ode4x2+1ⅆ2ⅆx2yxxⅆⅆxyx+9yx=0

(7)

ODEStepsode4

Let's solvex2+1ⅆ2ⅆx2yxxⅆⅆxyx+9yx=0Highest derivative means the order of the ODE is2ⅆ2ⅆx2yxIsolate 2nd derivativeⅆ2ⅆx2yx=9yxx21xⅆⅆxyxx21Group terms withyxon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ2ⅆx2yx+xⅆⅆxyxx219yxx21=0Multiply by denominators of ODEx2+1ⅆ2ⅆx2yxxⅆⅆxyx+9yx=0Make a change of variablesθ=arccosxCalculateⅆⅆxyxwith change of variablesⅆⅆxyx=ⅆⅆθyθⅆⅆxθxCompute1stderivativeⅆⅆxyxⅆⅆxyx=ⅆⅆθyθx2+1Calculateⅆ2ⅆx2yxwith change of variablesⅆ2ⅆx2yx=ⅆ2ⅆθ2yθⅆⅆxθx2+ⅆ2ⅆx2θxⅆⅆθyθCompute2ndderivativeⅆ2ⅆx2yxⅆ2ⅆx2yx=ⅆ2ⅆθ2yθx2+1xⅆⅆθyθx2+132Apply the change of variables to the ODEx2+1ⅆ2ⅆθ2yθx2+1xⅆⅆθyθx2+132+xⅆⅆθyθx2+1+9yx=0Multiply throughⅆ2ⅆθ2yθx2x2+1+ⅆ2ⅆθ2yθx2+1+x3ⅆⅆθyθx2+132xⅆⅆθyθx2+132+xⅆⅆθyθx2+1+9yx=0Simplify ODEⅆ2ⅆθ2yθ+9yx=0ODE is that of a harmonic oscillator with given general solutionyθ=C1sin3θ+C2cos3θRevert back toxyx=C1sin3arccosx+C2cos3arccosx

(8)

ode5x2+1diffyx,x,xxdiffyx,x4yx=0

ode5x2+1ⅆ2ⅆx2yxxⅆⅆxyx4yx=0

(9)

ODEStepsode5

Let's solvex2+1ⅆ2ⅆx2yxxⅆⅆxyx4yx=0Highest derivative means the order of the ODE is2ⅆ2ⅆx2yxIsolate 2nd derivativeⅆ2ⅆx2yx=4yxx21xⅆⅆxyxx21Group terms withyxon the lhs of the ODE and the rest on the rhs of the ODE; ODE is linearⅆ2ⅆx2yx+xⅆⅆxyxx21+4yxx21=0Multiply by denominators of ODEx2+1ⅆ2ⅆx2yxxⅆⅆxyx4yx=0Make a change of variablesθ=arccosxCalculateⅆⅆxyxwith change of variablesⅆⅆxyx=ⅆⅆθyθⅆⅆxθxCompute1stderivativeⅆⅆxyxⅆⅆxyx=ⅆⅆθyθx2+1Calculateⅆ2ⅆx2yxwith change of variablesⅆ2ⅆx2yx=ⅆ2ⅆθ2yθⅆⅆxθx2+ⅆ2ⅆx2θxⅆⅆθyθCompute2ndderivativeⅆ2ⅆx2yxⅆ2ⅆx2yx=ⅆ2ⅆθ2yθx2+1xⅆⅆθyθx2+132Apply the change of variables to the ODEx2+1ⅆ2ⅆθ2yθx2+1xⅆⅆθyθx2+132+xⅆⅆθyθx2+14yx=0Multiply throughⅆ2ⅆθ2yθx2x2+1+ⅆ2ⅆθ2yθx2+1+x3ⅆⅆθyθx2+132xⅆⅆθyθx2+132+xⅆⅆθyθx2+14yx=0Simplify ODE4yx+ⅆ2ⅆθ2yθ=0ODE is second order linear with characteristic polynomial that is the difference of squares with given general solutionyθ=C1ⅇ2θ+C2ⅇ2θRevert back toxyx=C1ⅇ2arccosx+C2ⅇ2arccosx

(10)

See Also

diff

Int

Student

Student[ODEs]

Student[ODEs][ODESteps]

 


Download Help Document