KostantCodifferential - Maple Help

LieAlgebras[KostantCodifferential] - calculate the Kostant co-differential of a p-form or a list of p-forms defined on a nilpotent Lie algebra with coefficients in a representation

LieAlgebras[KostantLaplacian] - calculate the Kostant Laplacian of a form defined on a nilpotent Lie algebra with coefficients in a representation

Calling Sequences

KonstantCodifferential(${\mathbf{ω}}$, B$,$invB)

KostantLaplacian(${\mathbf{ω}}$$,$B$,$invB$,$ method)

Parameters

$\mathrm{ω}$         - a form defined on a nilpotent Lie algebra with coefficients in a representation $V$

B         - (optional) the Killing form for the associated semi-simple Lie algebra

invB      - (optional) the inverse of the Killing form

method    - with the keyword argument method = "LieDerivative", the Kostant Laplacian is computed in terms of the Lie derivative operator

Description

 • Let $\mathrm{𝔤}$ be a semi-simple Lie algebra and let $V$ be a representation space for $\mathrm{𝔤}$. Fix a grading of :

and let  and .

Such gradings can be systematically constructed using the command GradeSemiSimpleLieAlgebra. The Lie algebra is nilpotent and the representation for restricts to give a representation space for ${\mathrm{𝔤}}_{-}$. The commands Representation and RestrictedRepresentation can be used to create these representations for and ${\mathrm{𝔤}}_{-}$.

 • Now let denote the space of $p$-forms on with coefficients in $V$. If and ${X}_{1}$, ...are vectors in ${𝔤}_{-}$, then . The spaces can be constructed using the command DGsetup and RelativeChains. The exterior derivative defines a mapping while the Kostant co-differential is a map .
 • The Kostant co-differential is easily defined in terms of the general Codifferentialoperator. Let  and let $X={\mathrm{α}}^{+}$be the degree $p$ multi-vector obtained by raising the indices of the form using the inverse of the Killing metric for $\mathrm{𝔤}$. Take the co-differential of $X$ to obtain the multi-vector $\partial$X of degree $p-1$ and use the Killing form to lower the indices of $\partial$X to obtain a form. This is the Kostant co-differential of that is,

 • The command PositiveDefiniteMetricOnRepresentationSpace can be to used to construct positive definite inner products on $\mathrm{𝔤}$ and on such that the Kostant co-differential is the adjoint of the exterior derivative operator with respect to the induced inner product on , that is,

for all and .

 • The Kostant Laplacian is the map defined by

.

 • The Kostant co-differential and Kostant Laplacian are very useful for the explicit calculation of the Lie algebra cohomology of the complex as

This is generally a much faster way to calculate these cohomology spaces than with a direct calculation using the command Cohomology. See also the command DGNullSpace.

 • The optional arguments (Killing form and inverse Killing form) for KostantCodifferential and KostantLaplacian dramatically improve the computational efficiency of these commands.
 • The formula for the Kostant Laplacian in terms of the Lie derivative is as follows. First pick a basis for $\mathrm{𝔤}$ which is adapted to the decomposition . Let ${\mathrm{η}}_{k}$ be the dual basis for defined with respect to the Killing form $B$, that is, $B($${\mathrm{η}}_{k}$ , . . Then

While this formula has important theoretical implications, it is used here primary as a consistency check on the software implementation of the Kostant Laplacian.

Examples

 > ${\mathrm{restart}}{:}$${\mathrm{with}}{}\left({\mathrm{DifferentialGeometry}}\right){:}$${\mathrm{with}}{}\left({\mathrm{Tensor}}\right){:}$${\mathrm{with}}{}\left({\mathrm{LieAlgebras}}\right){:}$

In this series of examples and applications we shall work with a 3-step graduation of the 10-dimensional real symplectic Lie algebra with coefficients in the adjoint representation.The following steps are needed to create the environment for defining the Kostant codifferential and the Kostant Laplacian.

 1 Use the command SimpleLieAlgebraData and DGsetup to initialize a simple Lie algebra $\mathrm{𝔤}$. 
 2 Use the command SimpleLieAlgebraProperties to retrieve the simple roots of $\mathrm{𝔤}$ . Use the command GradeSemiSimpleAlgebra to construct a gradation of $\mathrm{𝔤}$.
 3 Initialize the Lie algebras ${𝔤}_{}$ and ${\mathrm{𝔤}}_{-}$.
 4 Use the commands StandardRepresentation, Adjoint, Representation etc. to make a representation of . Use the RestrictedRepresentation command to restrict the representation of on $V$ to ${\mathrm{𝔤}}_{-}$
 5 Initialize the Lie algebra of ${𝔤}_{}$ with coefficients in $V$. Initialize the Lie algebra of ${{\mathrm{𝔤}}_{-}}_{}$ with coefficients in.

Step 1. Use the command SimpleLieAlgebraData to retrieve the structure equations for . Initialize this Lie algebra.

 > ${\mathrm{LD}}{â‰”}{\mathrm{SimpleLieAlgebraData}}{}\left({"sp\left(4, R\right)"}{,}{\mathrm{alg}}\right)$
 ${\mathrm{LD}}{≔}\left[\left[{\mathrm{e1}}{,}{\mathrm{e2}}\right]{=}{\mathrm{e2}}{,}\left[{\mathrm{e1}}{,}{\mathrm{e3}}\right]{=}{-}{\mathrm{e3}}{,}\left[{\mathrm{e1}}{,}{\mathrm{e5}}\right]{=}{2}{}{\mathrm{e5}}{,}\left[{\mathrm{e1}}{,}{\mathrm{e6}}\right]{=}{\mathrm{e6}}{,}\left[{\mathrm{e1}}{,}{\mathrm{e8}}\right]{=}{-}{2}{}{\mathrm{e8}}{,}\left[{\mathrm{e1}}{,}{\mathrm{e9}}\right]{=}{-}{\mathrm{e9}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e3}}\right]{=}{\mathrm{e1}}{-}{\mathrm{e4}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e4}}\right]{=}{\mathrm{e2}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e6}}\right]{=}{2}{}{\mathrm{e5}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e7}}\right]{=}{\mathrm{e6}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e8}}\right]{=}{-}{\mathrm{e9}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e9}}\right]{=}{-}{2}{}{\mathrm{e10}}{,}\left[{\mathrm{e3}}{,}{\mathrm{e4}}\right]{=}{-}{\mathrm{e3}}{,}\left[{\mathrm{e3}}{,}{\mathrm{e5}}\right]{=}{\mathrm{e6}}{,}\left[{\mathrm{e3}}{,}{\mathrm{e6}}\right]{=}{2}{}{\mathrm{e7}}{,}\left[{\mathrm{e3}}{,}{\mathrm{e9}}\right]{=}{-}{2}{}{\mathrm{e8}}{,}\left[{\mathrm{e3}}{,}{\mathrm{e10}}\right]{=}{-}{\mathrm{e9}}{,}\left[{\mathrm{e4}}{,}{\mathrm{e6}}\right]{=}{\mathrm{e6}}{,}\left[{\mathrm{e4}}{,}{\mathrm{e7}}\right]{=}{2}{}{\mathrm{e7}}{,}\left[{\mathrm{e4}}{,}{\mathrm{e9}}\right]{=}{-}{\mathrm{e9}}{,}\left[{\mathrm{e4}}{,}{\mathrm{e10}}\right]{=}{-}{2}{}{\mathrm{e10}}{,}\left[{\mathrm{e5}}{,}{\mathrm{e8}}\right]{=}{\mathrm{e1}}{,}\left[{\mathrm{e5}}{,}{\mathrm{e9}}\right]{=}{\mathrm{e2}}{,}\left[{\mathrm{e6}}{,}{\mathrm{e8}}\right]{=}{\mathrm{e3}}{,}\left[{\mathrm{e6}}{,}{\mathrm{e9}}\right]{=}{\mathrm{e1}}{+}{\mathrm{e4}}{,}\left[{\mathrm{e6}}{,}{\mathrm{e10}}\right]{=}{\mathrm{e2}}{,}\left[{\mathrm{e7}}{,}{\mathrm{e9}}\right]{=}{\mathrm{e3}}{,}\left[{\mathrm{e7}}{,}{\mathrm{e10}}\right]{=}{\mathrm{e4}}\right]$ (2.1)
 > ${\mathrm{DGsetup}}{}\left({\mathrm{LD}}{,}\left[{U}\right]{,}\left[{\mathrm{υ}}\right]\right)$
 ${\mathrm{Lie algebra: alg}}$ (2.2)

Step 2. Various properties of the classical Lie algebras are available with the command SimpleLieAlgebraProperties. We need the simple roots here.

 alg > ${\mathrm{Properties}}{â‰”}{\mathrm{SimpleLieAlgebraProperties}}{}\left({\mathrm{alg}}\right){:}$
 alg > ${\mathrm{Δ0}}{â‰”}{{\mathrm{Properties}}}_{{"SimpleRoots"}}$
 ${\mathrm{Δ0}}{≔}\left[\left[\begin{array}{c}{1}\\ {-1}\end{array}\right]{,}\left[\begin{array}{c}{0}\\ {2}\end{array}\right]\right]$ (2.3)

Every subset of the simple roots of a Lie algebra defines a grading of that algebra. Here we use all the roots of to obtain a 2-step gradation with the command GradeSemiSimpleLieAlgebra.

 alg > ${G}{â‰”}{\mathrm{GradeSemiSimpleLieAlgebra}}{}\left({\mathrm{Δ0}}{,}{\mathrm{Properties}}\right)$
 ${G}{≔}{table}{}\left(\left[{-1}{=}\left[{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{3}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{3}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{10}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{10}\right]{,}{1}\right]\right]\right]\right)\right]{,}{0}{=}\left[{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{1}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{1}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{4}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{4}\right]{,}{1}\right]\right]\right]\right)\right]{,}{-2}{=}\left[{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{9}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{9}\right]{,}{1}\right]\right]\right]\right)\right]{,}{1}{=}\left[{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{2}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{2}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{7}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{7}\right]{,}{1}\right]\right]\right]\right)\right]{,}{-3}{=}\left[{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{8}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{8}\right]{,}{1}\right]\right]\right]\right)\right]{,}{2}{=}\left[{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{6}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{6}\right]{,}{1}\right]\right]\right]\right)\right]{,}{3}{=}\left[{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{5}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{5}\right]{,}{1}\right]\right]\right]\right)\right]\right]\right)$ (2.4)

Step 3. Note that the vectors define the negative part of  with respect to the chosen grading. The next step is to introduce a new basis for $\mathrm{alg}$ adapted to the grading. We call  in this new basis and we call the negatively graded part $N.$

The negatively graded component $N$ is always nilpotent. With the following calling sequence LieAlgebraData returns the structure equations for $\mathrm{sp4}$, the structure equations for $N$, and the basis of our original algebra, adapted to the grading, and a basis for $N$.

 alg > ${\mathrm{LD1}}{,}{\mathrm{LD2}}{,}{\mathrm{B1}}{,}{\mathrm{B2}}{â‰”}{\mathrm{LieAlgebraData}}{}\left({G}{,}{\mathrm{sp4}}{,}{"negative"}{,}{N}{,}{\mathrm{output}}{=}{"basis"}\right)$
 ${\mathrm{LD1}}{,}{\mathrm{LD2}}{,}{\mathrm{B1}}{,}{\mathrm{B2}}{≔}\left[\left[{\mathrm{e1}}{,}{\mathrm{e5}}\right]{=}{2}{}{\mathrm{e1}}{,}\left[{\mathrm{e1}}{,}{\mathrm{e7}}\right]{=}{\mathrm{e2}}{,}\left[{\mathrm{e1}}{,}{\mathrm{e9}}\right]{=}{-}{\mathrm{e3}}{,}\left[{\mathrm{e1}}{,}{\mathrm{e10}}\right]{=}{-}{\mathrm{e5}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e3}}\right]{=}{2}{}{\mathrm{e1}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e5}}\right]{=}{\mathrm{e2}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e6}}\right]{=}{\mathrm{e2}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e7}}\right]{=}{2}{}{\mathrm{e4}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e8}}\right]{=}{-}{\mathrm{e3}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e9}}\right]{=}{-}{\mathrm{e6}}{-}{\mathrm{e5}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e10}}\right]{=}{-}{\mathrm{e7}}{,}\left[{\mathrm{e3}}{,}{\mathrm{e4}}\right]{=}{-}{\mathrm{e2}}{,}\left[{\mathrm{e3}}{,}{\mathrm{e5}}\right]{=}{\mathrm{e3}}{,}\left[{\mathrm{e3}}{,}{\mathrm{e6}}\right]{=}{-}{\mathrm{e3}}{,}\left[{\mathrm{e3}}{,}{\mathrm{e7}}\right]{=}{\mathrm{e6}}{-}{\mathrm{e5}}{,}\left[{\mathrm{e3}}{,}{\mathrm{e9}}\right]{=}{2}{}{\mathrm{e8}}{,}\left[{\mathrm{e3}}{,}{\mathrm{e10}}\right]{=}{\mathrm{e9}}{,}\left[{\mathrm{e4}}{,}{\mathrm{e6}}\right]{=}{2}{}{\mathrm{e4}}{,}\left[{\mathrm{e4}}{,}{\mathrm{e8}}\right]{=}{-}{\mathrm{e6}}{,}\left[{\mathrm{e4}}{,}{\mathrm{e9}}\right]{=}{-}{\mathrm{e7}}{,}\left[{\mathrm{e5}}{,}{\mathrm{e7}}\right]{=}{\mathrm{e7}}{,}\left[{\mathrm{e5}}{,}{\mathrm{e9}}\right]{=}{\mathrm{e9}}{,}\left[{\mathrm{e5}}{,}{\mathrm{e10}}\right]{=}{2}{}{\mathrm{e10}}{,}\left[{\mathrm{e6}}{,}{\mathrm{e7}}\right]{=}{-}{\mathrm{e7}}{,}\left[{\mathrm{e6}}{,}{\mathrm{e8}}\right]{=}{2}{}{\mathrm{e8}}{,}\left[{\mathrm{e6}}{,}{\mathrm{e9}}\right]{=}{\mathrm{e9}}{,}\left[{\mathrm{e7}}{,}{\mathrm{e8}}\right]{=}{\mathrm{e9}}{,}\left[{\mathrm{e7}}{,}{\mathrm{e9}}\right]{=}{2}{}{\mathrm{e10}}\right]{,}\left[\left[{\mathrm{e2}}{,}{\mathrm{e3}}\right]{=}{2}{}{\mathrm{e1}}{,}\left[{\mathrm{e3}}{,}{\mathrm{e4}}\right]{=}{-}{\mathrm{e2}}\right]{,}\left[{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{8}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{8}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{9}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{9}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{3}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{3}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{10}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{10}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{1}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{1}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{4}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{4}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{2}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{2}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{7}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{7}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{6}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{6}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{5}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{5}\right]{,}{1}\right]\right]\right]\right)\right]{,}\left[{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{8}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{8}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{9}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{9}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{3}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{3}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{10}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{alg}}{,}\left[\right]\right]{,}\left[\left[\left[{10}\right]{,}{1}\right]\right]\right]\right)\right]$ (2.5)



Initialize the Lie algebras $\mathrm{sp4}$ and $N$.



 alg > ${\mathrm{DGsetup}}{}\left({\mathrm{LD1}}\right)$
 ${\mathrm{Lie algebra: sp4}}$ (2.6)
 sp4 > ${\mathrm{DGsetup}}{}\left({\mathrm{LD2}}\right)$
 ${\mathrm{Lie algebra: N}}$ (2.7)

Step 4. Now we are ready to define the adjoint representation for and its restriction to $N$. Since is 10-dimensional, we need a 10-dimensional representation space. Call it $V$.

 N > ${\mathrm{DGsetup}}{}\left(\left[{\mathrm{x1}}{,}{\mathrm{x2}}{,}{\mathrm{x3}}{,}{\mathrm{x4}}{,}{\mathrm{x5}}{,}{\mathrm{x6}}{,}{\mathrm{x7}}{,}{\mathrm{x8}}{,}{\mathrm{x9}}{,}{\mathrm{x10}}\right]{,}{V}{,}{\mathrm{grading}}{=}\left[{-}{3}{,}{-}{2}{,}{-}{1}{,}{-}{1}{,}{0}{,}{0}{,}{1}{,}{1}{,}{2}{,}{3}\right]\right)$
 ${\mathrm{frame name: V}}$ (2.8)

The command Adjoint gives the adjoint representation for $\mathrm{sp4}.$

 V > ${\mathrm{ρ1}}{â‰”}{\mathrm{Adjoint}}{}\left({\mathrm{sp4}}{,}{\mathrm{representationspace}}{=}{V}\right)$
 ${\mathrm{ρ1}}{≔}$ (2.9)

The command RestrictedRepresentation gives the restriction of the adjoint representation for  to the subalgebra. (The following calling sequence assumes that the first 4 vectors in the given basis define the subalgebra $N$. )

 sp4 > ${\mathrm{ρ2}}{â‰”}{\mathrm{RestrictedRepresentation}}{}\left({\mathrm{ρ1}}{,}{N}\right)$
 ${\mathrm{ρ2}}{≔}{\mathrm{_DG}}{}\left(\left[\left[{"Representation"}{,}\left[\left[{N}{,}{0}\right]{,}\left[{V}{,}{0}\right]\right]{,}\left[\right]\right]{,}\left[\left[\begin{array}{cccccccccc}{0}& {0}& {0}& {0}& {2}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {1}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {-1}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {-1}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\end{array}\right]{,}\left[\begin{array}{cccccccccc}{0}& {0}& {2}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {1}& {1}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {-1}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {2}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {-1}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {-1}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {-1}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\end{array}\right]{,}\left[\begin{array}{cccccccccc}{0}& {-2}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {-1}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {1}& {-1}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {-1}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {1}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {2}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {1}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\end{array}\right]{,}\left[\begin{array}{cccccccccc}{0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {1}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {2}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {-1}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {-1}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\end{array}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"Representation"}{,}\left[\left[{N}{,}{0}\right]{,}\left[{V}{,}{0}\right]\right]{,}\left[\right]\right]{,}\left[\left[\begin{array}{cccccccccc}{0}& {0}& {0}& {0}& {2}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {1}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {-1}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {-1}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\end{array}\right]{,}\left[\begin{array}{cccccccccc}{0}& {0}& {2}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {1}& {1}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {-1}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {2}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {-1}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {-1}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {-1}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\end{array}\right]{,}\left[\begin{array}{cccccccccc}{0}& {-2}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {-1}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {1}& {-1}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {-1}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {1}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {2}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {1}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\end{array}\right]{,}\left[\begin{array}{cccccccccc}{0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {1}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {2}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {-1}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {-1}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}& {0}\end{array}\right]\right]\right]\right)$ (2.10)

Step 5. Initialize the Lie algebra with coefficients in the adjoint representation. Call it $\mathrm{sp4V}$ and label the basis vectors  and the basis 1-forms .

 N > ${\mathrm{DGsetup}}{}\left({\mathrm{ρ1}}{,}{\mathrm{sp4V}}{,}\left[{'}{X}{'}\right]{,}\left[{'}{\mathrm{ξ}}{'}\right]\right)$
 ${\mathrm{Lie algebra with coefficients: sp4V}}$ (2.11)

Initialize the Lie algebra $N$ with coefficients in the adjoint representation of . Call it and label the basis vectors and the basis 1-forms . As described above the Kostant codifferential uses the embedding of $N$ in This information is provided by the keyword argument ambientalgebra.

 sp4V > ${\mathrm{DGsetup}}{}\left({\mathrm{ρ2}}{,}{\mathrm{NV}}{,}\left[{'}{\mathrm{O}}{'}\right]{,}\left[{'}{o}{'}\right]{,}{\mathrm{ambientalgebra}}{=}{\mathrm{sp4V}}\right)$
 ${\mathrm{Lie algebra with coefficients: NV}}$ (2.12)

Example 1.

Here are some sample calculations of the Kostant co-differential.

 NV > ${\mathrm{α}}{â‰”}{\mathrm{evalDG}}{}\left({\mathrm{x1}}{}{\mathrm{o2}}\right)$
 ${\mathrm{\alpha }}{≔}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{1}\right]{,}\left[\left[\left[{2}\right]{,}{\mathrm{x1}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{1}\right]{,}\left[\left[\left[{2}\right]{,}{\mathrm{x1}}\right]\right]\right]\right)$ (2.13)
 NV > ${\mathrm{KostantCodifferential}}{}\left({\mathrm{α}}\right)$
 $\frac{{\mathrm{x3}}}{{12}}$ (2.14)
 NV > ${\mathrm{β}}{â‰”}{\mathrm{evalDG}}{}\left({\mathrm{x3}}{}{\mathrm{o2}}{&w}{\mathrm{o3}}\right)$
 ${\mathrm{\beta }}{≔}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{3}\right]{,}{\mathrm{x3}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{3}\right]{,}{\mathrm{x3}}\right]\right]\right]\right)$ (2.15)
 NV > ${\mathrm{KostantCodifferential}}{}\left({\mathrm{β}}\right)$
 ${\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{1}\right]{,}\left[\left[\left[{1}\right]{,}{-}\frac{{\mathrm{x3}}}{{12}}\right]{,}\left[\left[{2}\right]{,}{-}\frac{{\mathrm{x5}}}{{12}}{+}\frac{{\mathrm{x6}}}{{12}}\right]{,}\left[\left[{3}\right]{,}{-}\frac{{\mathrm{x8}}}{{6}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{1}\right]{,}\left[\left[\left[{1}\right]{,}{-}\frac{{\mathrm{x3}}}{{12}}\right]{,}\left[\left[{2}\right]{,}{-}\frac{{\mathrm{x5}}}{{12}}{+}\frac{{\mathrm{x6}}}{{12}}\right]{,}\left[\left[{3}\right]{,}{-}\frac{{\mathrm{x8}}}{{6}}\right]\right]\right]\right)$ (2.16)

Let's do this last calculation directly from the definition. For this we need the Killing form and its inverse.

 NV > ${B}{â‰”}{\mathrm{KillingForm}}{}\left({\mathrm{sp4V}}\right)$
 ${B}{≔}{\mathrm{_DG}}{}\left(\left[\left[{"tensor"}{,}{\mathrm{sp4V}}{,}\left[\left[{"cov_bas"}{,}{"cov_bas"}\right]{,}\left[\right]\right]\right]{,}\left[\left[\left[{1}{,}{10}\right]{,}{6}\right]{,}\left[\left[{2}{,}{9}\right]{,}{12}\right]{,}\left[\left[{3}{,}{7}\right]{,}{12}\right]{,}\left[\left[{4}{,}{8}\right]{,}{6}\right]{,}\left[\left[{5}{,}{5}\right]{,}{12}\right]{,}\left[\left[{6}{,}{6}\right]{,}{12}\right]{,}\left[\left[{7}{,}{3}\right]{,}{12}\right]{,}\left[\left[{8}{,}{4}\right]{,}{6}\right]{,}\left[\left[{9}{,}{2}\right]{,}{12}\right]{,}\left[\left[{10}{,}{1}\right]{,}{6}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"tensor"}{,}{\mathrm{sp4V}}{,}\left[\left[{"cov_bas"}{,}{"cov_bas"}\right]{,}\left[\right]\right]\right]{,}\left[\left[\left[{1}{,}{10}\right]{,}{6}\right]{,}\left[\left[{2}{,}{9}\right]{,}{12}\right]{,}\left[\left[{3}{,}{7}\right]{,}{12}\right]{,}\left[\left[{4}{,}{8}\right]{,}{6}\right]{,}\left[\left[{5}{,}{5}\right]{,}{12}\right]{,}\left[\left[{6}{,}{6}\right]{,}{12}\right]{,}\left[\left[{7}{,}{3}\right]{,}{12}\right]{,}\left[\left[{8}{,}{4}\right]{,}{6}\right]{,}\left[\left[{9}{,}{2}\right]{,}{12}\right]{,}\left[\left[{10}{,}{1}\right]{,}{6}\right]\right]\right]\right)$ (2.17)
 NV > ${\mathrm{invB}}{â‰”}{\mathrm{InverseMetric}}{}\left({B}\right)$
 ${\mathrm{invB}}{≔}{\mathrm{_DG}}{}\left(\left[\left[{"tensor"}{,}{\mathrm{sp4V}}{,}\left[\left[{"con_bas"}{,}{"con_bas"}\right]{,}\left[\right]\right]\right]{,}\left[\left[\left[{1}{,}{10}\right]{,}\frac{{1}}{{6}}\right]{,}\left[\left[{2}{,}{9}\right]{,}\frac{{1}}{{12}}\right]{,}\left[\left[{3}{,}{7}\right]{,}\frac{{1}}{{12}}\right]{,}\left[\left[{4}{,}{8}\right]{,}\frac{{1}}{{6}}\right]{,}\left[\left[{5}{,}{5}\right]{,}\frac{{1}}{{12}}\right]{,}\left[\left[{6}{,}{6}\right]{,}\frac{{1}}{{12}}\right]{,}\left[\left[{7}{,}{3}\right]{,}\frac{{1}}{{12}}\right]{,}\left[\left[{8}{,}{4}\right]{,}\frac{{1}}{{6}}\right]{,}\left[\left[{9}{,}{2}\right]{,}\frac{{1}}{{12}}\right]{,}\left[\left[{10}{,}{1}\right]{,}\frac{{1}}{{6}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"tensor"}{,}{\mathrm{sp4V}}{,}\left[\left[{"con_bas"}{,}{"con_bas"}\right]{,}\left[\right]\right]\right]{,}\left[\left[\left[{1}{,}{10}\right]{,}\frac{{1}}{{6}}\right]{,}\left[\left[{2}{,}{9}\right]{,}\frac{{1}}{{12}}\right]{,}\left[\left[{3}{,}{7}\right]{,}\frac{{1}}{{12}}\right]{,}\left[\left[{4}{,}{8}\right]{,}\frac{{1}}{{6}}\right]{,}\left[\left[{5}{,}{5}\right]{,}\frac{{1}}{{12}}\right]{,}\left[\left[{6}{,}{6}\right]{,}\frac{{1}}{{12}}\right]{,}\left[\left[{7}{,}{3}\right]{,}\frac{{1}}{{12}}\right]{,}\left[\left[{8}{,}{4}\right]{,}\frac{{1}}{{6}}\right]{,}\left[\left[{9}{,}{2}\right]{,}\frac{{1}}{{12}}\right]{,}\left[\left[{10}{,}{1}\right]{,}\frac{{1}}{{6}}\right]\right]\right]\right)$ (2.18)

Re-define as a form on sp4R.

 sp4V > ${\mathrm{β1}}{â‰”}{\mathrm{evalDG}}{}\left({\mathrm{x3}}{}{\mathrm{ξ2}}{&w}{\mathrm{ξ3}}\right)$
 ${\mathrm{β1}}{≔}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{sp4V}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{3}\right]{,}{\mathrm{x3}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{sp4V}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{3}\right]{,}{\mathrm{x3}}\right]\right]\right]\right)$ (2.19)

Use the inverse of the Killing form to convert to a multi-vector $X$:

 sp4V > ${X}{â‰”}{\mathrm{RaiseLowerIndices}}{}\left({\mathrm{invB}}{,}{\mathrm{β1}}{,}\left[{1}{,}{2}\right]\right)$
 ${X}{≔}{\mathrm{_DG}}{}\left(\left[\left[{"multivector"}{,}{\mathrm{sp4V}}{,}{2}\right]{,}\left[\left[\left[{7}{,}{9}\right]{,}{-}\frac{{\mathrm{x3}}}{{144}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"multivector"}{,}{\mathrm{sp4V}}{,}{2}\right]{,}\left[\left[\left[{7}{,}{9}\right]{,}{-}\frac{{\mathrm{x3}}}{{144}}\right]\right]\right]\right)$ (2.20)

Take the co-differential of $X$.

 sp4V > ${Y}{â‰”}{\mathrm{Codifferential}}{}\left({X}\right)$
 ${Y}{≔}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{sp4V}}{,}\left[\right]\right]{,}\left[\left[\left[{7}\right]{,}{-}\frac{{\mathrm{x8}}}{{72}}\right]{,}\left[\left[{9}\right]{,}{-}\frac{{\mathrm{x5}}}{{144}}{+}\frac{{\mathrm{x6}}}{{144}}\right]{,}\left[\left[{10}\right]{,}{-}\frac{{\mathrm{x3}}}{{72}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"vector"}{,}{\mathrm{sp4V}}{,}\left[\right]\right]{,}\left[\left[\left[{7}\right]{,}{-}\frac{{\mathrm{x8}}}{{72}}\right]{,}\left[\left[{9}\right]{,}{-}\frac{{\mathrm{x5}}}{{144}}{+}\frac{{\mathrm{x6}}}{{144}}\right]{,}\left[\left[{10}\right]{,}{-}\frac{{\mathrm{x3}}}{{72}}\right]\right]\right]\right)$ (2.21)

Lower the indices of $Y$ with the Killing form.

 sp4V > ${\mathrm{RaiseLowerIndices}}{}\left({B}{,}{Y}{,}\left[{1}\right]\right)$
 ${\mathrm{_DG}}{}\left(\left[\left[{"tensor"}{,}{\mathrm{sp4V}}{,}\left[\left[{"cov_bas"}\right]{,}\left[\right]\right]\right]{,}\left[\left[\left[{1}\right]{,}{-}\frac{{\mathrm{x3}}}{{12}}\right]{,}\left[\left[{2}\right]{,}{-}\frac{{\mathrm{x5}}}{{12}}{+}\frac{{\mathrm{x6}}}{{12}}\right]{,}\left[\left[{3}\right]{,}{-}\frac{{\mathrm{x8}}}{{6}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"tensor"}{,}{\mathrm{sp4V}}{,}\left[\left[{"cov_bas"}\right]{,}\left[\right]\right]\right]{,}\left[\left[\left[{1}\right]{,}{-}\frac{{\mathrm{x3}}}{{12}}\right]{,}\left[\left[{2}\right]{,}{-}\frac{{\mathrm{x5}}}{{12}}{+}\frac{{\mathrm{x6}}}{{12}}\right]{,}\left[\left[{3}\right]{,}{-}\frac{{\mathrm{x8}}}{{6}}\right]\right]\right]\right)$ (2.22)

Example 2.

The square of the Kostant co-differential vanishes.

 NV > ${\mathrm{α2}}{â‰”}{\mathrm{evalDG}}{}\left({\mathrm{x3}}{}\left({\mathrm{o1}}{&w}{\mathrm{o2}}\right){&w}{\mathrm{o3}}\right)$
 ${\mathrm{α2}}{≔}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{3}\right]{,}\left[\left[\left[{1}{,}{2}{,}{3}\right]{,}{\mathrm{x3}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{3}\right]{,}\left[\left[\left[{1}{,}{2}{,}{3}\right]{,}{\mathrm{x3}}\right]\right]\right]\right)$ (2.23)
 NV > ${\mathrm{β2}}{â‰”}{\mathrm{KostantCodifferential}}{}\left({\mathrm{β}}\right)$
 ${\mathrm{β2}}{≔}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{1}\right]{,}\left[\left[\left[{1}\right]{,}{-}\frac{{\mathrm{x3}}}{{12}}\right]{,}\left[\left[{2}\right]{,}{-}\frac{{\mathrm{x5}}}{{12}}{+}\frac{{\mathrm{x6}}}{{12}}\right]{,}\left[\left[{3}\right]{,}{-}\frac{{\mathrm{x8}}}{{6}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{1}\right]{,}\left[\left[\left[{1}\right]{,}{-}\frac{{\mathrm{x3}}}{{12}}\right]{,}\left[\left[{2}\right]{,}{-}\frac{{\mathrm{x5}}}{{12}}{+}\frac{{\mathrm{x6}}}{{12}}\right]{,}\left[\left[{3}\right]{,}{-}\frac{{\mathrm{x8}}}{{6}}\right]\right]\right]\right)$ (2.24)
 sp4V > ${\mathrm{KostantCodifferential}}{}\left({\mathrm{β2}}\right)$
 ${0}$ (2.25)

Example 3.

We check that the Kostant co-differential is the adjoint of the exterior derivative. Here are the inner products we need (See PositiveDefiniteMetricOnRepresentationSpace) .

 sp4 > ${g}{â‰”}{\mathrm{evalDG}}{}\left({6}{}{\mathrm{o1}}{&t}{\mathrm{o1}}{+}{12}{}{\mathrm{o2}}{&t}{\mathrm{o2}}{+}{12}{}{\mathrm{o3}}{&t}{\mathrm{o3}}{+}{6}{}{\mathrm{o4}}{&t}{\mathrm{o4}}\right)$
 ${g}{≔}{\mathrm{_DG}}{}\left(\left[\left[{"tensor"}{,}{\mathrm{NV}}{,}\left[\left[{"cov_bas"}{,}{"cov_bas"}\right]{,}\left[\right]\right]\right]{,}\left[\left[\left[{1}{,}{1}\right]{,}{6}\right]{,}\left[\left[{2}{,}{2}\right]{,}{12}\right]{,}\left[\left[{3}{,}{3}\right]{,}{12}\right]{,}\left[\left[{4}{,}{4}\right]{,}{6}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"tensor"}{,}{\mathrm{NV}}{,}\left[\left[{"cov_bas"}{,}{"cov_bas"}\right]{,}\left[\right]\right]\right]{,}\left[\left[\left[{1}{,}{1}\right]{,}{6}\right]{,}\left[\left[{2}{,}{2}\right]{,}{12}\right]{,}\left[\left[{3}{,}{3}\right]{,}{12}\right]{,}\left[\left[{4}{,}{4}\right]{,}{6}\right]\right]\right]\right)$ (2.26)
 sp4 > ${\mathrm{gV}}{â‰”}{\mathrm{evalDG}}{}\left({\mathrm{dx1}}{&t}{\mathrm{dx1}}{+}{2}{}{\mathrm{dx2}}{&t}{\mathrm{dx2}}{+}{2}{}{\mathrm{dx3}}{&t}{\mathrm{dx3}}{+}{\mathrm{dx4}}{&t}{\mathrm{dx4}}{+}{2}{}{\mathrm{dx5}}{&t}{\mathrm{dx5}}{+}{2}{}{\mathrm{dx6}}{&t}{\mathrm{dx6}}{+}{2}{}{\mathrm{dx7}}{&t}{\mathrm{dx7}}{+}{\mathrm{dx8}}{&t}{\mathrm{dx8}}{+}{2}{}{\mathrm{dx9}}{&t}{\mathrm{dx9}}{+}{\mathrm{dx10}}{&t}{\mathrm{dx10}}\right)$
 ${\mathrm{gV}}{≔}{\mathrm{_DG}}{}\left(\left[\left[{"tensor"}{,}{V}{,}\left[\left[{"cov_bas"}{,}{"cov_bas"}\right]{,}\left[\right]\right]\right]{,}\left[\left[\left[{1}{,}{1}\right]{,}{1}\right]{,}\left[\left[{2}{,}{2}\right]{,}{2}\right]{,}\left[\left[{3}{,}{3}\right]{,}{2}\right]{,}\left[\left[{4}{,}{4}\right]{,}{1}\right]{,}\left[\left[{5}{,}{5}\right]{,}{2}\right]{,}\left[\left[{6}{,}{6}\right]{,}{2}\right]{,}\left[\left[{7}{,}{7}\right]{,}{2}\right]{,}\left[\left[{8}{,}{8}\right]{,}{1}\right]{,}\left[\left[{9}{,}{9}\right]{,}{2}\right]{,}\left[\left[{10}{,}{10}\right]{,}{1}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"tensor"}{,}{V}{,}\left[\left[{"cov_bas"}{,}{"cov_bas"}\right]{,}\left[\right]\right]\right]{,}\left[\left[\left[{1}{,}{1}\right]{,}{1}\right]{,}\left[\left[{2}{,}{2}\right]{,}{2}\right]{,}\left[\left[{3}{,}{3}\right]{,}{2}\right]{,}\left[\left[{4}{,}{4}\right]{,}{1}\right]{,}\left[\left[{5}{,}{5}\right]{,}{2}\right]{,}\left[\left[{6}{,}{6}\right]{,}{2}\right]{,}\left[\left[{7}{,}{7}\right]{,}{2}\right]{,}\left[\left[{8}{,}{8}\right]{,}{1}\right]{,}\left[\left[{9}{,}{9}\right]{,}{2}\right]{,}\left[\left[{10}{,}{10}\right]{,}{1}\right]\right]\right]\right)$ (2.27)
 sp4 > ${\mathrm{α3}}{â‰”}{\mathrm{evalDG}}{}\left({\mathrm{x3}}{}{\mathrm{o1}}{&w}{\mathrm{o2}}\right)$
 ${\mathrm{α3}}{≔}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{2}\right]{,}{\mathrm{x3}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{2}\right]{,}{\mathrm{x3}}\right]\right]\right]\right)$ (2.28)
 NV > ${\mathrm{β3}}{â‰”}{\mathrm{evalDG}}{}\left({\mathrm{x8}}{&wedge}{\mathrm{o1}}\right)$
 ${\mathrm{β3}}{≔}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{1}\right]{,}\left[\left[\left[{1}\right]{,}{\mathrm{x8}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{1}\right]{,}\left[\left[\left[{1}\right]{,}{\mathrm{x8}}\right]\right]\right]\right)$ (2.29)

Here is the left-hand side of the adjoint equation.

 NV > ${\mathrm{FormInnerProduct}}{}\left({g}{,}{\mathrm{gV}}{,}{\mathrm{KostantCodifferential}}{}\left({\mathrm{α3}}\right){,}{\mathrm{β3}}\right)$
 $\frac{{1}}{{36}}$ (2.30)

Here is the right-hand side of the adjoint equation.

 NV > ${\mathrm{FormInnerProduct}}{}\left({g}{,}{\mathrm{gV}}{,}{\mathrm{α3}}{,}{\mathrm{ExteriorDerivative}}{}\left({\mathrm{β3}}\right)\right)$
 $\frac{{1}}{{36}}$ (2.31)

We can easily check the adjoint equation for lists of forms. We use the command RelativeChains to generate lists of forms. For this example, we specify the weight of the forms to keep the lists small.

 V > ${\mathrm{ChangeFrame}}{}\left({\mathrm{NV}}\right)$
 ${V}$ (2.32)
 V > ${\mathrm{Λ1}}{â‰”}{\mathrm{RelativeChains}}{}\left(\left[{}\right]{,}{1}{,}{\mathrm{weight}}{=}{1}\right)$
 ${\mathrm{Λ1}}{≔}\left[{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{1}\right]{,}\left[\left[\left[{1}\right]{,}{\mathrm{x2}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{1}\right]{,}\left[\left[\left[{1}\right]{,}{\mathrm{x2}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{1}\right]{,}\left[\left[\left[{2}\right]{,}{\mathrm{x3}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{1}\right]{,}\left[\left[\left[{2}\right]{,}{\mathrm{x3}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{1}\right]{,}\left[\left[\left[{2}\right]{,}{\mathrm{x4}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{1}\right]{,}\left[\left[\left[{2}\right]{,}{\mathrm{x4}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{1}\right]{,}\left[\left[\left[{3}\right]{,}{\mathrm{x5}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{1}\right]{,}\left[\left[\left[{3}\right]{,}{\mathrm{x5}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{1}\right]{,}\left[\left[\left[{4}\right]{,}{\mathrm{x5}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{1}\right]{,}\left[\left[\left[{4}\right]{,}{\mathrm{x5}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{1}\right]{,}\left[\left[\left[{3}\right]{,}{\mathrm{x6}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{1}\right]{,}\left[\left[\left[{3}\right]{,}{\mathrm{x6}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{1}\right]{,}\left[\left[\left[{4}\right]{,}{\mathrm{x6}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{1}\right]{,}\left[\left[\left[{4}\right]{,}{\mathrm{x6}}\right]\right]\right]\right)\right]$ (2.33)
 V > ${\mathrm{Λ2}}{â‰”}{\mathrm{RelativeChains}}{}\left(\left[{}\right]{,}{2}{,}{\mathrm{weight}}{=}{1}\right)$
 ${\mathrm{Λ2}}{≔}\left[{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{3}\right]{,}{\mathrm{x1}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{3}\right]{,}{\mathrm{x1}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{4}\right]{,}{\mathrm{x1}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{4}\right]{,}{\mathrm{x1}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{3}\right]{,}{\mathrm{x2}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{3}\right]{,}{\mathrm{x2}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{4}\right]{,}{\mathrm{x2}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{4}\right]{,}{\mathrm{x2}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{3}{,}{4}\right]{,}{\mathrm{x3}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{3}{,}{4}\right]{,}{\mathrm{x3}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{3}{,}{4}\right]{,}{\mathrm{x4}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{3}{,}{4}\right]{,}{\mathrm{x4}}\right]\right]\right]\right)\right]$ (2.34)
 V > ${\mathrm{LHS}}{â‰”}{\mathrm{FormInnerProduct}}{}\left({g}{,}{\mathrm{gV}}{,}{\mathrm{KostantCodifferential}}{}\left({\mathrm{Λ2}}\right){,}{\mathrm{Λ1}}\right)$
 ${\mathrm{LHS}}{≔}\left[\begin{array}{ccccccc}\frac{{1}}{{36}}& {0}& {0}& \frac{{1}}{{36}}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& \frac{{1}}{{18}}& {0}& {0}\\ {-}\frac{{1}}{{36}}& {0}& \frac{{1}}{{72}}& \frac{{1}}{{72}}& {0}& \frac{{1}}{{72}}& {0}\\ {0}& {-}\frac{{1}}{{36}}& {0}& {0}& \frac{{1}}{{36}}& {0}& \frac{{1}}{{36}}\\ {0}& \frac{{1}}{{36}}& {0}& {0}& \frac{{1}}{{36}}& {0}& {-}\frac{{1}}{{36}}\\ {0}& {0}& \frac{{1}}{{72}}& {0}& {0}& {-}\frac{{1}}{{36}}& {0}\end{array}\right]$ (2.35)
 NV > ${\mathrm{RHS}}{â‰”}{\mathrm{FormInnerProduct}}{}\left({g}{,}{\mathrm{gV}}{,}{\mathrm{Λ2}}{,}{\mathrm{ExteriorDerivative}}{}\left({\mathrm{Λ1}}\right)\right)$
 ${\mathrm{RHS}}{≔}\left[\begin{array}{ccccccc}\frac{{1}}{{36}}& {0}& {0}& \frac{{1}}{{36}}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& \frac{{1}}{{18}}& {0}& {0}\\ {-}\frac{{1}}{{36}}& {0}& \frac{{1}}{{72}}& \frac{{1}}{{72}}& {0}& \frac{{1}}{{72}}& {0}\\ {0}& {-}\frac{{1}}{{36}}& {0}& {0}& \frac{{1}}{{36}}& {0}& \frac{{1}}{{36}}\\ {0}& \frac{{1}}{{36}}& {0}& {0}& \frac{{1}}{{36}}& {0}& {-}\frac{{1}}{{36}}\\ {0}& {0}& \frac{{1}}{{72}}& {0}& {0}& {-}\frac{{1}}{{36}}& {0}\end{array}\right]$ (2.36)

The equality of these matrices verifies the adjoint equation for given lists of forms.

 NV > ${\mathrm{LHS}}{-}{\mathrm{RHS}}$
 $\left[\begin{array}{ccccccc}{0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}\\ {0}& {0}& {0}& {0}& {0}& {0}& {0}\end{array}\right]$ (2.37)

Example 4.

Here are some sample calculations of the Kostant Laplacian.

A scalar:

 NV > ${\mathrm{ChangeFrame}}{}\left({\mathrm{NV}}\right)$
 ${V}$ (2.38)
 NV > ${\mathrm{α4}}{â‰”}{\mathrm{x6}}$
 ${\mathrm{α4}}{≔}{\mathrm{x6}}$ (2.39)
 NV > ${\mathrm{KostantLaplacian}}{}\left({\mathrm{α4}}\right)$
 $\frac{{\mathrm{x6}}}{{2}}$ (2.40)

A 2-form:

 NV > ${\mathrm{β4}}{â‰”}{\mathrm{evalDG}}{}\left({\mathrm{x3}}{}{\mathrm{o1}}{&w}{\mathrm{o4}}\right)$
 ${\mathrm{β4}}{≔}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{4}\right]{,}{\mathrm{x3}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{4}\right]{,}{\mathrm{x3}}\right]\right]\right]\right)$ (2.41)
 NV > ${\mathrm{KostantLaplacian}}{}\left({\mathrm{β4}}\right)$
 ${\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{4}\right]{,}\frac{{\mathrm{x3}}}{{2}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{4}\right]{,}\frac{{\mathrm{x3}}}{{2}}\right]\right]\right]\right)$ (2.42)

A 3-form:

 NV > ${\mathrm{δ4}}{â‰”}{\mathrm{evalDG}}{}\left({\mathrm{x3}}{}\left({\mathrm{o1}}{&w}{\mathrm{o3}}\right){&w}{\mathrm{o4}}\right)$
 ${\mathrm{δ4}}{≔}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{3}\right]{,}\left[\left[\left[{1}{,}{3}{,}{4}\right]{,}{\mathrm{x3}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{3}\right]{,}\left[\left[\left[{1}{,}{3}{,}{4}\right]{,}{\mathrm{x3}}\right]\right]\right]\right)$ (2.43)
 NV > ${\mathrm{KostantLaplacian}}{}\left({\mathrm{δ4}}\right)$
 ${\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{3}\right]{,}\left[\left[\left[{1}{,}{3}{,}{4}\right]{,}\frac{{2}{}{\mathrm{x3}}}{{3}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{3}\right]{,}\left[\left[\left[{1}{,}{3}{,}{4}\right]{,}\frac{{2}{}{\mathrm{x3}}}{{3}}\right]\right]\right]\right)$ (2.44)

Example 5.

We calculate the second cohomology

 V > ${\mathrm{ChangeFrame}}{}\left({\mathrm{NV}}\right)$
 ${\mathrm{NV}}$ (2.45)

Here are the 2-chains

 V > ${\mathrm{Λ2}}{â‰”}{\mathrm{RelativeChains}}{}\left(\left[{}\right]{,}{2}\right)$
 ${\mathrm{Λ2}}{≔}\left[{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{2}\right]{,}{\mathrm{x1}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{2}\right]{,}{\mathrm{x1}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{3}\right]{,}{\mathrm{x1}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{3}\right]{,}{\mathrm{x1}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{4}\right]{,}{\mathrm{x1}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{4}\right]{,}{\mathrm{x1}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{3}\right]{,}{\mathrm{x1}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{3}\right]{,}{\mathrm{x1}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{4}\right]{,}{\mathrm{x1}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{4}\right]{,}{\mathrm{x1}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{3}{,}{4}\right]{,}{\mathrm{x1}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{3}{,}{4}\right]{,}{\mathrm{x1}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{2}\right]{,}{\mathrm{x2}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{2}\right]{,}{\mathrm{x2}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{3}\right]{,}{\mathrm{x2}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{3}\right]{,}{\mathrm{x2}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{4}\right]{,}{\mathrm{x2}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{4}\right]{,}{\mathrm{x2}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{3}\right]{,}{\mathrm{x2}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{3}\right]{,}{\mathrm{x2}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{4}\right]{,}{\mathrm{x2}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{4}\right]{,}{\mathrm{x2}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{3}{,}{4}\right]{,}{\mathrm{x2}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{3}{,}{4}\right]{,}{\mathrm{x2}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{2}\right]{,}{\mathrm{x3}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{2}\right]{,}{\mathrm{x3}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{3}\right]{,}{\mathrm{x3}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{3}\right]{,}{\mathrm{x3}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{4}\right]{,}{\mathrm{x3}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{4}\right]{,}{\mathrm{x3}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{3}\right]{,}{\mathrm{x3}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{3}\right]{,}{\mathrm{x3}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{4}\right]{,}{\mathrm{x3}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{4}\right]{,}{\mathrm{x3}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{3}{,}{4}\right]{,}{\mathrm{x3}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{3}{,}{4}\right]{,}{\mathrm{x3}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{2}\right]{,}{\mathrm{x4}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{2}\right]{,}{\mathrm{x4}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{3}\right]{,}{\mathrm{x4}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{3}\right]{,}{\mathrm{x4}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{4}\right]{,}{\mathrm{x4}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{4}\right]{,}{\mathrm{x4}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{3}\right]{,}{\mathrm{x4}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{3}\right]{,}{\mathrm{x4}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{4}\right]{,}{\mathrm{x4}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{4}\right]{,}{\mathrm{x4}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{3}{,}{4}\right]{,}{\mathrm{x4}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{3}{,}{4}\right]{,}{\mathrm{x4}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{2}\right]{,}{\mathrm{x5}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{2}\right]{,}{\mathrm{x5}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{3}\right]{,}{\mathrm{x5}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{3}\right]{,}{\mathrm{x5}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{4}\right]{,}{\mathrm{x5}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{4}\right]{,}{\mathrm{x5}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{3}\right]{,}{\mathrm{x5}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{3}\right]{,}{\mathrm{x5}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{4}\right]{,}{\mathrm{x5}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{4}\right]{,}{\mathrm{x5}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{3}{,}{4}\right]{,}{\mathrm{x5}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{3}{,}{4}\right]{,}{\mathrm{x5}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{2}\right]{,}{\mathrm{x6}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{2}\right]{,}{\mathrm{x6}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{3}\right]{,}{\mathrm{x6}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{3}\right]{,}{\mathrm{x6}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{4}\right]{,}{\mathrm{x6}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{4}\right]{,}{\mathrm{x6}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{3}\right]{,}{\mathrm{x6}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{3}\right]{,}{\mathrm{x6}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{4}\right]{,}{\mathrm{x6}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{4}\right]{,}{\mathrm{x6}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{3}{,}{4}\right]{,}{\mathrm{x6}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{3}{,}{4}\right]{,}{\mathrm{x6}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{2}\right]{,}{\mathrm{x7}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{2}\right]{,}{\mathrm{x7}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{3}\right]{,}{\mathrm{x7}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{3}\right]{,}{\mathrm{x7}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{4}\right]{,}{\mathrm{x7}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{4}\right]{,}{\mathrm{x7}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{3}\right]{,}{\mathrm{x7}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{3}\right]{,}{\mathrm{x7}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{4}\right]{,}{\mathrm{x7}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{4}\right]{,}{\mathrm{x7}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{3}{,}{4}\right]{,}{\mathrm{x7}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{3}{,}{4}\right]{,}{\mathrm{x7}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{2}\right]{,}{\mathrm{x8}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{2}\right]{,}{\mathrm{x8}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{3}\right]{,}{\mathrm{x8}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{3}\right]{,}{\mathrm{x8}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{4}\right]{,}{\mathrm{x8}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{4}\right]{,}{\mathrm{x8}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{3}\right]{,}{\mathrm{x8}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{3}\right]{,}{\mathrm{x8}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{4}\right]{,}{\mathrm{x8}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{4}\right]{,}{\mathrm{x8}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{3}{,}{4}\right]{,}{\mathrm{x8}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{3}{,}{4}\right]{,}{\mathrm{x8}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{2}\right]{,}{\mathrm{x9}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{2}\right]{,}{\mathrm{x9}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{3}\right]{,}{\mathrm{x9}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{3}\right]{,}{\mathrm{x9}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{4}\right]{,}{\mathrm{x9}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{4}\right]{,}{\mathrm{x9}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{3}\right]{,}{\mathrm{x9}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{3}\right]{,}{\mathrm{x9}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{4}\right]{,}{\mathrm{x9}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{2}{,}{4}\right]{,}{\mathrm{x9}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{3}{,}{4}\right]{,}{\mathrm{x9}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{3}{,}{4}\right]{,}{\mathrm{x9}}\right]\right]\right]\right){,}{\mathrm{_DG}}{}\left(\left[\left[{"form"}{,}{\mathrm{NV}}{,}{2}\right]{,}\left[\left[\left[{1}{,}{2}\right]{,}{\mathrm{x10}}\right]\right]\right]\right)<\right]$