DifferentialGeometry/Tensor/BelRobinson - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Home : Support : Online Help : DifferentialGeometry/Tensor/BelRobinson

Tensor[BelRobinson] - calculate the Bel-Robinson tensor

Calling Sequences

     BelRobinson(g, W, indexlist)

Parameters

   g         - a metric tensor on a 4-dimensional manifold

   W         - (optional) the Weyl tensor of the metric

   indexlist - (optional) the keyword argument indexlist = ind, where ind is a list of 4 index types "con" or "cov"

 

Description

Examples

See Also

Description

• 

The Bel-Robinson tensor  is a covariant rank 4 tensor defined in terms of the Weyl tensor  on a 4-dimensional manifold by (see, for example, Penrose and Rindler Vol. 1)

The Bel-Robinson tensor is totally symmetric:  . The Bel-Robinson tensor is trace-free: . If  is an Einstein metric, that is,  (where  is the Ricci tensor for the metric  and  is a constant), then the covariant divergence of Bel-Robinson vanishes:   Here  denotes the covariant derivative with respect to the Christoffel connection for .

• 

The keyword argument indexlist = ind allows the user to specify the index structure for the Bel-Robinson tensor. For example, with indexlist = ["con", "con", "con", "con"], the contravariant form  is returned. The default output is the purely covariant form (as above).

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form BelRobinson(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-BelRobinson.

Examples

 

Example 1.

First create a 4-dimensional manifold M and define a metric on . The metric shown below is a homogenous Einstein metric (see (12.34) in Stephani, Kramer et al).

(2.1)
M > 

(2.2)

 

Calculate the Bel-Robinson tensor for the metric .  The result is clearly a symmetric tensor.

M > 

(2.3)

 

Use the optional keyword argument indexlist to calculate the contravariant form of the Bel-Robinson tensor.

M > 

(2.4)

 

The tensor B is trace-free.

(2.5)

(2.6)

 

The covariant divergence of the tensor B1 vanishes.  To check this, first calculate the Christoffel connection C for the metric g and then calculate the covariant derivative of B1.

(2.7)

(2.8)

(2.9)

 

The divergence of the Bel-Robinson tensor is not automatically zero; the divergence vanishes when the metric g is an Einstein metric.  To check this, compute the Ricci tensor of g.

(2.10)
M > 

(2.11)

 

The Weyl tensor, if already calculated, can be used to quickly compute the Bel-Robinson tensor.

(2.12)

(2.13)

See Also

DifferentialGeometry, Tensor, Christoffel, CovariantDerivative, CurvatureTensor, RicciTensor, WeylTensor


Download Help Document