DifferentialGeometry/Tensor/BivectorSolderForm - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/Tensor/BivectorSolderForm

Tensor[BivectorSolderForm] - construct the bivector solder form defined by a solder form

Calling Sequences

     BivectorSolderForm(sigma, spinorType, indexlist)

Parameters

   sigma      - a solder form

   spinorType - a string, either "spinor" or "barspinor"

   indexlist  - (optional) the keyword argument indexlist = ind, where ind is a list of 4 index types "con" or "cov"

 

Description

Examples

See Also

Description

• 

A bivector is a skew-symmetric, rank 2 contravariant tensor. On a 4-dimensional manifold with solder form σ there is a 1-1 correspondence between bivectors and symmetric rank 2 spinors.  This correspondence is explicitly furnished by the bivector solder forms S and S which are defined in terms of the solder form s by

SijAB=σiAC 'σj C 'BσjBC 'σi C 'A

    and

SijA'B'=σiCA 'σjC     B'σjCB 'σiC    A'.

    

• 

The tensor indices of the bivector solder forms are raised and lowered with the metric g defined by σ

• 

The keyword argument indexlist = ind allows the user to specify the index structure for the bivector solder form. For example, with indexlist = ["con", "con", "con", "con"], the contravariant form S ijAB is returned.

• 

The bivector soldering forms satisfy a large number of identities, some of which are illustrated in Examples 2 - 4.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form BivectorSolderForm(...) only after executing the commands with(DifferentialGeometry; with(Tensor); in that order.  It can always be used in the long form DifferentialGeometry:-Tensor:-BivectorSolderForm.

Examples

withDifferentialGeometry:withTensor:

 

Example 1.

First create a vector bundle over M with base coordinates t, x,y,z and fiber coordinates z1, z2, w1,w2.

DGsetupt,x,y,z,z1,z2,w1,w2,M

frame name: M

(2.1)

 

Define a metric g on M. Note that our spinor conventions have the metric with signature +1, 1, 1, 1.

gevalDGdt&tdtdx&tdxdy&tdydz&tdz

g:=dtdtdxdxdydydzdz

(2.2)

 

Define an orthonormal frame on M with respect to the metric g.

FD_t,D_x,D_y,D_z

F:=D_t,D_x,D_y,D_z

(2.3)

 

Calculate the solder form sigma from the frame F.

σSolderFormF

σ:=22dtD_z1D_w1+22dtD_z2D_w2+22dxD_z1D_w2+22dxD_z2D_w1I22dyD_z1D_w2+I22dyD_z2D_w1+22dzD_z1D_w122dzD_z2D_w2

(2.4)

 

Calculate the bivector solder form S from sigma.

SBivectorSolderFormσ,spinor

S:=dtdxD_z1D_z1dtdxD_z2D_z2IdtdyD_z1D_z1IdtdyD_z2D_z2dtdzD_z1D_z2dtdzD_z2D_z1dxdtD_z1D_z1+dxdtD_z2D_z2IdxdyD_z1D_z2IdxdyD_z2D_z1dxdzD_z1D_z1dxdzD_z2D_z2+IdydtD_z1D_z1+IdydtD_z2D_z2+IdydxD_z1D_z2+IdydxD_z2D_z1+IdydzD_z1D_z1IdydzD_z2D_z2+dzdtD_z1D_z2+dzdtD_z2D_z1+dzdxD_z1D_z1+dzdxD_z2D_z2IdzdyD_z1D_z1+IdzdyD_z2D_z2

(2.5)

 

Example 2.

The contraction of two bivector solder forms on their tensor indices can be expressed in terms of the Kronecker delta spinor.

 

SijABSCDij=4 δCAδDB+δCBδDA.

 

We check this identity using the solder form from Example 1.  First we calculate the left-hand side.

S1BivectorSolderFormσ,spinor

S1:=dtdxD_z1D_z1dtdxD_z2D_z2IdtdyD_z1D_z1IdtdyD_z2D_z2dtdzD_z1D_z2dtdzD_z2D_z1dxdtD_z1D_z1+dxdtD_z2D_z2IdxdyD_z1D_z2IdxdyD_z2D_z1dxdzD_z1D_z1dxdzD_z2D_z2+IdydtD_z1D_z1+IdydtD_z2D_z2+IdydxD_z1D_z2+IdydxD_z2D_z1+IdydzD_z1D_z1IdydzD_z2D_z2+dzdtD_z1D_z2+dzdtD_z2D_z1+dzdxD_z1D_z1+dzdxD_z2D_z2IdzdyD_z1D_z1+IdzdyD_z2D_z2

(2.6)

S2BivectorSolderFormσ,spinor,indextype=con,con,cov,cov

S2:=D_tD_xdz1dz1D_tD_xdz2dz2+ID_tD_ydz1dz1+ID_tD_ydz2dz2D_tD_zdz1dz2D_tD_zdz2dz1D_xD_tdz1dz1+D_xD_tdz2dz2+ID_xD_ydz1dz2+ID_xD_ydz2dz1D_xD_zdz1dz1D_xD_zdz2dz2ID_yD_tdz1dz1ID_yD_tdz2dz2ID_yD_xdz1dz2ID_yD_xdz2dz1ID_yD_zdz1dz1+ID_yD_zdz2dz2+D_zD_tdz1dz2+D_zD_tdz2dz1+D_zD_xdz1dz1+D_zD_xdz2dz2+ID_zD_ydz1dz1ID_zD_ydz2dz2

(2.7)

LHSContractIndicesS1,S2,1,1,2,2

LHS:=8D_z1D_z1dz1dz1+4D_z1D_z2dz1dz2+4D_z1D_z2dz2dz1+4D_z2D_z1dz1dz2+4D_z2D_z1dz2dz1+8D_z2D_z2dz2dz2

(2.8)

 

To calculate the right-hand side we construct the symmetrized tensor product of 2 Kronecker delta spinors and multiply by 8 (because SymmetrizeIndices will include a factor of 1/2).

δKroneckerDeltaSpinorspinor

δ:=D_z1dz1+D_z2dz2

(2.9)

ERearrangeIndicesδ&tδ,2,3

E:=D_z1D_z1dz1dz1+D_z1D_z2dz1dz2+D_z2D_z1dz2dz1+D_z2D_z2dz2dz2

(2.10)

RHS8&multSymmetrizeIndicesE,1,2,Symmetric

RHS:=8D_z1D_z1dz1dz1+4D_z1D_z2dz1dz2+4D_z1D_z2dz2dz1+4D_z2D_z1dz1dz2+4D_z2D_z1dz2dz1+8D_z2D_z2dz2dz2

(2.11)

 

Check that the LHS and RHS are the same.

LHS&minusRHS

0D_z1D_z1dz1dz1

(2.12)

 

Example 3.

The contraction of two bivector soldering forms on their tensor indices can be expressed in terms of the metric and the permutation tensor

 

SijABShkAB=2gih gjkgjhgiki εijhk.

 

We check this identity using the solder form from Example 1.  First we calculate the left-hand side.

S3BivectorSolderFormσ,spinor,indextype=cov,cov,cov,cov

S3:=dtdxdz1dz1+dtdxdz2dz2Idtdydz1dz1Idtdydz2dz2+dtdzdz1dz2+dtdzdz2dz1+dxdtdz1dz1dxdtdz2dz2+Idxdydz1dz2+Idxdydz2dz1dxdzdz1dz1dxdzdz2dz2+Idydtdz1dz1+Idydtdz2dz2Idydxdz1dz2Idydxdz2dz1Idydzdz1dz1+Idydzdz2dz2dzdtdz1dz2dzdtdz2dz1+dzdxdz1dz1+dzdxdz2dz2+Idzdydz1dz1Idzdydz2dz2

(2.13)

LHSContractIndicesS1,S3,3,3,4,4

LHS:=2dzdtdzdt2Idtdydzdx2Idydzdtdx+2Idtdzdydx+2Idtdydxdz2dtdxdtdx+2dtdydydt+2dzdydzdy+2Idydzdxdt2dtdydtdy2Idzdtdydx+2Idxdtdydz2dxdtdxdt2dzdydydz2Idydxdzdt2Idxdydtdz+2dxdydxdy+2dzdxdzdx2dydzdzdy+2Idydxdtdz+2Idydtdzdx2dydtdydt2Idxdtdzdy+2Idzdxdydt2Idydtdxdz+2dtdzdzdt2dzdxdxdz+2dxdtdtdx+2dydtdtdy+2dtdxdxdt+2Idzdtdxdy2dxdzdzdx2Idxdzdydt+2dxdzdxdz+2dzdtdtdz2dydxdxdy+2dydxdydx+2Idzdydtdx2Idtdxdydz+2dydzdydz2Idzdydxdt+2Idxdzdtdy2dxdydydx+2Idtdxdzdy+2Idxdydzdt2Idzdxdtdy2Idtdzdxdy2dtdzdtdz

(2.14)

 

To calculate the right-hand side we first construct the tensor product of the metric tensor with itself.

Gg&tensorg

G:=dtdtdtdtdtdtdxdxdtdtdydydtdtdzdzdxdxdtdt+dxdxdxdx+dxdxdydy+dxdxdzdzdydydtdt+dydydxdx+dydydydy+dydydzdzdzdzdtdt+dzdzdxdx+dzdzdydy+dzdzdzdz

(2.15)

 

We re-arrange the indices of G to obtain the first two terms on the right-hand side.

RHS1RearrangeIndicesG,2,3

RHS1:=dtdtdtdtdtdxdtdxdtdydtdydtdzdtdzdxdtdxdt+dxdxdxdx+dxdydxdy+dxdzdxdzdydtdydt+dydxdydx+dydydydy+dydzdydzdzdtdzdt+dzdxdzdx+dzdydzdy+dzdzdzdz

(2.16)

RHS2RearrangeIndicesRHS1,1,2

RHS2:=dtdtdtdtdxdtdtdxdydtdtdydzdtdtdzdtdxdxdt+dxdxdxdx+dydxdxdy+dzdxdxdzdtdydydt+dxdydydx+dydydydy+dzdydydzdtdzdzdt+dxdzdzdx+dydzdzdy+dzdzdzdz

(2.17)

 

We construct the epsilon tensor using the commands MetricDensity and PermutationSymbol.

EMetricDensityg,1,detmetric=1&tensorPermutationSymbolcov_bas

E:=dtdxdydzdtdxdzdydtdydxdz+dtdydzdx+dtdzdxdydtdzdydxdxdtdydz+dxdtdzdy+dxdydtdzdxdydzdtdxdzdtdy+dxdzdydt+dydtdxdzdydtdzdxdydxdtdz+dydxdzdt+dydzdtdxdydzdxdtdzdtdxdy+dzdtdydx+dzdxdtdydzdxdydtdzdydtdx+dzdydxdt

(2.18)

 

Evaluate the right-hand side of the identity and check that it agrees with the left-hand side.

RHSevalDG2RHS1RHS2IE

RHS:=2Idydzdxdt+2dzdydzdy+2Idtdxdzdy+2dxdzdxdz2Idydzdtdx+2Idxdydzdt2dtdydtdy2dxdzdzdx2dxdydydx+2Idxdzdtdy2dzdydydz2dydxdxdy2Idzdydxdt2dydtdydt2dxdtdxdt2Idtdydzdx+2dzdxdzdx+2Idzdxdydt2dzdxdxdz2Idzdxdtdy2dzdtdzdt+2dydtdtdy2Idzdtdydx+2Idzdtdxdy+2dzdtdtdz+2dtdzdzdt+2dtdxdxdt2Idydxdzdt+2Idxdtdydz2Idydtdxdz2Idxdtdzdy2Idxdydtdz+2Idtdydxdz2dydzdzdy2Idtdzdxdy+2dydxdydx2Idtdxdydz2Idxdzdydt+2Idydtdzdx+2dxdtdtdx+2dxdydxdy2dtdzdtdz+2dydzdydz+2Idzdydtdx+2dtdydydt2dtdxdtdx+2Idydxdtdz+2Idtdzdydx

(2.19)

LHS&minusRHS

0dtdtdtdt

(2.20)

 

Example 4.

The bivector solder form is anti-self-dual, that is,

 

SijAB=i2εijhkShkAB.

 

We check this identity using the solder form from Example 1.  The left-hand side is just the solder form S1 from Example 1.

LHSS1

LHS:=dtdxD_z1D_z1dtdxD_z2D_z2IdtdyD_z1D_z1IdtdyD_z2D_z2dtdzD_z1D_z2dtdzD_z2D_z1dxdtD_z1D_z1+dxdtD_z2D_z2IdxdyD_z1D_z2IdxdyD_z2D_z1dxdzD_z1D_z1dxdzD_z2D_z2+IdydtD_z1D_z1+IdydtD_z2D_z2+IdydxD_z1D_z2+IdydxD_z2D_z1+IdydzD_z1D_z1IdydzD_z2D_z2+dzdtD_z1D_z2+dzdtD_z2D_z1+dzdxD_z1D_z1+dzdxD_z2D_z2IdzdyD_z1D_z1+IdzdyD_z2D_z2

(2.21)

 

To evaluate the right-hand side we begin with the contravariant form of the bivector solder form.

S4BivectorSolderFormσ,spinor,indextype=con,con,con,con

S4:=D_tD_xD_z1D_z1+D_tD_xD_z2D_z2+ID_tD_yD_z1D_z1+ID_tD_yD_z2D_z2+D_tD_zD_z1D_z2+D_tD_zD_z2D_z1+D_xD_tD_z1D_z1D_xD_tD_z2D_z2ID_xD_yD_z1D_z2ID_xD_yD_z2D_z1D_xD_zD_z1D_z1D_xD_zD_z2D_z2ID_yD_tD_z1D_z1ID_yD_tD_z2D_z2+ID_yD_xD_z1D_z2+ID_yD_xD_z2D_z1+ID_yD_zD_z1D_z1ID_yD_zD_z2D_z2D_zD_tD_z1D_z2D_zD_tD_z2D_z1+D_zD_xD_z1D_z1+D_zD_xD_z2D_z2ID_zD_yD_z1D_z1+ID_zD_yD_z2D_z2

(2.22)

 

Construct the epsilon tensor and contract with S4 and to obtain the left-hand side.

EMetricDensityg,1,detmetric=1&tensorPermutationSymbolcov_bas

E:=dtdxdydzdtdxdzdydtdydxdz+dtdydzdx+dtdzdxdydtdzdydxdxdtdydz+dxdtdzdy+dxdydtdzdxdydzdtdxdzdtdy+dxdzdydt+dydtdxdzdydtdzdxdydxdtdz+dydxdzdt+dydzdtdxdydzdxdtdzdtdxdy+dzdtdydx+dzdxdtdydzdxdydtdzdydtdx+dzdydxdt

(2.23)

RHSI2&multContractIndicesE,S4,3,1,4,2

RHS:=dtdxD_z1D_z1dtdxD_z2D_z2IdtdyD_z1D_z1IdtdyD_z2D_z2dtdzD_z1D_z2dtdzD_z2D_z1dxdtD_z1D_z1+dxdtD_z2D_z2IdxdyD_z1D_z2IdxdyD_z2D_z1dxdzD_z1D_z1dxdzD_z2D_z2+IdydtD_z1D_z1+IdydtD_z2D_z2+IdydxD_z1D_z2+IdydxD_z2D_z1+IdydzD_z1D_z1IdydzD_z2D_z2+dzdtD_z1D_z2+dzdtD_z2D_z1+dzdxD_z1D_z1+dzdxD_z2D_z2IdzdyD_z1D_z1+IdzdyD_z2D_z2

(2.24)

LHS&minusRHS

0dtdtD_z1D_z1

(2.25)

See Also

DifferentialGeometry, Tensor, ContractIndices, KroneckerDeltaSpinor, MetricDensity, PermutationSymbol, SolderForm, SymmetrizeIndices, RearrangeIndices