 IsAlternating - Maple Help

GroupTheory

 IsAlternating
 Monte-Carlo test for alternating groups
 IsSymmetric
 Monte-Carlo test for symmetric groups Calling Sequence IsAlternating( G ) IsAlternating( G, confidence = val ) IsSymmetric( G ) IsSymmetric( G, confidence = val ) Parameters

 G - a permutation group val - confidence level; a number between 0 and 1 Description

 • The commands IsAlternating( G ) and IsSymmetric( G ) provide one-sided Monte-Carlo tests for a permutation group G to be, respectively, an alternating or symmetric group in its natural action on the set $\left\{1,2,\dots ,n\right\}$, where n is the degree of G.
 • If the command returns the value true, then the result is guaranteed to be correct.  However, it may return the value false incorrectly, with small probability.
 • The level of confidence can be controlled by means of the confidence option. By default, the confidence level is set to 999999/1000000, which is the likelihood that either command IsAlternating or IsSymmetric returns the value false when the input group is actually a symmetric or alternating group, respectively. A higher value of the confidence option requires an increase in running time. Likewise, setting the confidence option to a lower value reduces the running time, but increases the chance that an incorrect false value is returned. Examples

 > $\mathrm{with}\left(\mathrm{GroupTheory}\right):$

Note these first examples are abstractly isomorphic to the indicated group, but are not permutation equivalent to it in its natural action.

 > $\mathrm{AreIsomorphic}\left(\mathrm{SmallGroup}\left(12,3\right),\mathrm{Alt}\left(4\right)\right)$
 ${\mathrm{true}}$ (1)
 > $\mathrm{IsAlternating}\left(\mathrm{SmallGroup}\left(12,3\right)\right)$
 ${\mathrm{false}}$ (2)
 > $\mathrm{AreIsomorphic}\left(\mathrm{SmallGroup}\left(6,1\right),\mathrm{Symm}\left(3\right)\right)$
 ${\mathrm{true}}$ (3)
 > $\mathrm{IsSymmetric}\left(\mathrm{SmallGroup}\left(6,1\right)\right)$
 ${\mathrm{false}}$ (4)
 > $G≔\mathrm{Group}\left(\left[\mathrm{seq}\right]\left(\mathrm{Perm}\left(\left[\left[i,i+1,i+2\right]\right]\right),i=1..8\right)\right)$
 ${G}{≔}{\mathrm{< a permutation group on 10 letters with 8 generators >}}$ (5)
 > $\mathrm{IsAlternating}\left(G\right)$
 ${\mathrm{true}}$ (6)
 > $\mathrm{IsSymmetric}\left(\mathrm{Group}\left(\left[\mathrm{seq}\right]\left(\mathrm{Perm}\left(\left[\left[i,i+1\right]\right]\right),i=1..9\right)\right)\right)$
 ${\mathrm{true}}$ (7)

By decreasing the value of the confidence option to 1/2, we can virtually guarantee incorrect answers some of the time.

 > $\mathrm{seq}\left(\mathrm{IsAlternating}\left(G,':-\mathrm{confidence}'=\frac{1}{2}\right),i=1..10\right)$
 ${\mathrm{true}}{,}{\mathrm{true}}{,}{\mathrm{false}}{,}{\mathrm{true}}{,}{\mathrm{true}}{,}{\mathrm{true}}{,}{\mathrm{true}}{,}{\mathrm{false}}{,}{\mathrm{true}}{,}{\mathrm{true}}$ (8) Compatibility

 • The GroupTheory[IsAlternating] and GroupTheory[IsSymmetric] commands were introduced in Maple 17.