Eval - Maple Help

Online Help

All Products    Maple    MapleSim


Ordinals

  

Eval

  

substitute values for parameters in an ordinal

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

Eval(o, x=v)

Eval(o, l)

Parameters

o

-

ordinal

x

-

name

v

-

integer or polynomial with integer coefficients

l

-

list or set of equations of type x=v

Description

• 

The Eval(o, x=v) calling sequence substitutes the value v for the parameter x in the ordinal o, returning either an ordinal data structure, a nonnegative integer, or a polynomial with positive integer coefficients.

• 

It is possible for v to be a negative integer or a polynomial with some negative integer coefficients, provided that the result is a valid ordinal, which means it does not have any negative integer coefficients.

• 

The resulting ordinal is simplified, namely, any coefficients that become zero are removed, and if only a single term with exponent 0 is left after that, a nonnegative integer or a polynomial with positive integer coefficients is returned.

• 

The Eval(o, l) calling sequence performs all the substitutions in l simultaneously.

• 

This command can also be applied to a polynomial with positive integer coefficients representing a nonnegative integer ordinal.

Examples

withOrdinals

`+`&comma;`.`&comma;`<`&comma;<=&comma;Add&comma;Base&comma;Dec&comma;Decompose&comma;Div&comma;Eval&comma;Factor&comma;Gcd&comma;Lcm&comma;LessThan&comma;Log&comma;Max&comma;Min&comma;Mult&comma;Ordinal&comma;Power&comma;Split&comma;Sub&comma;`^`&comma;degree&comma;lcoeff&comma;log&comma;lterm&comma;ω&comma;quo&comma;rem&comma;tcoeff&comma;tdegree&comma;tterm

(1)

o1Ordinalω&comma;x&comma;2&comma;3&comma;1&comma;y+1&comma;0&comma;4

o1ωωx&plus;ω23&plus;ωy+1&plus;4

(2)

Evalo1&comma;x=0

ω23&plus;ωy+1&plus;4

(3)

Several substitutions can be done at once. It is also possible to substitute a polynomial for a parameter and not just an integer.

Evalo1&comma;x=x2+1&comma;y=4

ωωx2+1&plus;ω23&plus;ω5&plus;4

(4)

The result need not be an ordinal data structure.

o2Ordinal2&comma;x2+x&comma;1&comma;x&comma;0&comma;4

o2ω2x2+x&plus;ωx&plus;4

(5)

Evalo2&comma;x=0

4

(6)

Evalω·x&comma;x=0

0

(7)

The attempt to substitute a negative integer or a polynomial with negative coefficients may result in an error if the result has negative coefficients.

o3Ordinal1&comma;2x+2&comma;0&comma;3

o3ω2x+2&plus;3

(8)

Evalo3&comma;x=1

3

(9)

Evalo3&comma;x=2

Error, (in Ordinals:-Eval) invalid substitution; result is not a valid ordinal

Evalo3&comma;x=x1

ω2x&plus;3

(10)

Evalo3&comma;x=x2

Error, (in Ordinals:-Eval) invalid substitution; result is not a valid ordinal

The Eval command can also be applied to a polynomial with positive integer coefficients representing a constant ordinal.

Evalx2+1&comma;x=3=evalx2+1&comma;x=3

10=10

(11)

Compatibility

• 

The Ordinals[Eval] command was introduced in Maple 2015.

• 

For more information on Maple 2015 changes, see Updates in Maple 2015.

See Also

eval

Ordinals

Ordinals[Ordinal]

overload