QBinomial - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


QDifferenceEquations

  

QPochhammer

  

q-Pochhammer symbol

  

QBinomial

  

q-binomial coefficient

  

QBrackets

  

q-brackets

  

QFactorial

  

q-factorial

  

QGAMMA

  

q-Gamma

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

QPochhammer(a, q, infinity)

QPochhammer(a, q, k)

QBinomial(n, k, q)

QBrackets(k, q)

QFactorial(k, q)

QGAMMA(a, q)

Parameters

a

-

algebraic expression

q

-

name used as the parameter q, or an integer power of a name

k

-

symbolic integer value

n

-

symbolic integer value

Description

• 

The QDifferenceEquations package supports five q-hypergeometric terms. They are q-Pochhammer symbol, q-binomial coefficient, q-brackets, q-factorial, and q-Gamma, which correspond to the five functions QPochhammer, QBinomial, QBrackets, QFactorial, and QGAMMA.

• 

These functions are placeholders for the q-objects. The command expand allows expansion of these objects. The command convert...,QPochhammer allows the re-write of QBinomial, QBrackets, QFactorial, and QGAMMA in terms of QPochhammer symbols.

• 

The five q-hypergeometric objects are defined as follows.

QPochhammera,q,=j=01aqj

QPochhammera&comma;q&comma;k=j=0k11aqj0<k1k=0j=k−111aqjk<0

  

Note that QPochhammerseqai&comma;i=1..n&comma;q&comma;k (the compact Gasper and Rahman notation) means i=1nQPochhammerai&comma;q&comma;k.

QBinomialn&comma;k&comma;q=QPochhammerq&comma;q&comma;nQPochhammerq&comma;q&comma;kQPochhammerq&comma;q&comma;nk

QBracketsk&comma;q=qk1q1

QFactorialk&comma;q=QPochhammerq&comma;q&comma;k1qk

QGAMMAz&comma;q=QPochhammerq&comma;q&comma;1q1zQPochhammerqz&comma;q&comma;

• 

The commands QSimpComb and QSimplify are for simplification of expressions involving these q-objects.

• 

This implementation is mainly based on the implementation by H. Boeing, W. Koepf. See the References section.

Examples

withQDifferenceEquations&colon;

expandQPochhammera&comma;q&comma;4

1aaq+1aq2+1aq3+1

(1)

expandQPochhammera&comma;q&comma;4

11aq41aq31aq21aq

(2)

expandQBracketsk&comma;q

qk1q1

(3)

convertQBinomialn&comma;k&comma;q&comma;QPochhammer

QPochhammerq&comma;q&comma;nQPochhammerq&comma;q&comma;kQPochhammerq&comma;q&comma;nk

(4)

convertQGAMMAz&comma;q&comma;QPochhammer

QPochhammerq&comma;q&comma;1q1zQPochhammerqz&comma;q&comma;

(5)

convertQFactorialk&comma;q&comma;QPochhammer

QPochhammerq&comma;q&comma;k1qk

(6)

Hq212q6nQPochhammer1q5+q3&comma;q&comma;nQPochhammer1q4+q2&comma;q&comma;nQPochhammer1q21q3&comma;q&comma;nQPochhammer1q2&comma;q&comma;nQPochhammer1q21q12&comma;q&comma;nQPochhammer1&comma;q&comma;nQPochhammer1q21q2&comma;q&comma;nQPochhammer1q5&comma;q&comma;nQPochhammer1q4&comma;q&comma;n2QPochhammerq4&comma;q&comma;nQPochhammer1q2+1&comma;q&comma;n

Hq212q6nQPochhammer1q5+q3&comma;q&comma;nQPochhammer1q4+q2&comma;q&comma;nQPochhammerq3q21&comma;q&comma;nQPochhammer1q2&comma;q&comma;nQPochhammerq12q21&comma;q&comma;nQPochhammer−1&comma;q&comma;nQPochhammerq2q21&comma;q&comma;nQPochhammer1q5&comma;q&comma;nQPochhammer1q4&comma;q&comma;n2QPochhammerq4&comma;q&comma;nQPochhammer1q2+1&comma;q&comma;n

(7)

Compute the certificate of H (which is a rational function in qn):

QSimpCombsubsn=n+1&comma;HH

q5q3+qnq2+qn1+qnqnq12+q21qnq3+q21q4q2+qnqnq2+q21q2+qn1q4+qn21+qnq4q5+qn

(8)

References

  

Boeing, H., and Koepf, W. "Algorithms for q-hypergeometric summation in computer algebra." Journal of Symbolic Computation. Vol. 11. (1999): 1-23.

See Also

QDifferenceEquations[IsQHypergeometricTerm]

QDifferenceEquations[QSimpComb]