Exponential - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Statistics[Distributions]

  

Exponential

  

exponential distribution

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

Exponential(b)

ExponentialDistribution(b)

Parameters

b

-

scale parameter

Description

• 

The exponential distribution is a continuous probability distribution with probability density function given by:

ft=0t<0&ExponentialE;tbbotherwise

  

subject to the following conditions:

0<b

• 

The exponential distribution has the lack of memory property: the probability of an event occurring in the next time interval of an exponential distribution is independent of the amount of time that has already passed.

• 

The exponential variate with scale parameter b is a special case of the Gamma variate with scale parameter b and shape parameter 1: Exponential(b) ~ Gamma(b,1)

• 

The exponential variate with scale parameter b is a special case of the Weibull variate with scale parameter b and shape parameter 1: Exponential(b) ~ Weibull(b,1)

• 

The exponential variate with scale parameter b is related to the unit Uniform variate by the formula:  Exponential(b) ~ -b * log(Uniform(0,1))

• 

The discrete analog of the exponential variate is the Geometric variate.

• 

The exponential variate with scale parameter b is related to the Laplace variate with location parameter a and scale parameter b according to the formula:  Exponential(b) ~ abs(Laplace(a,b) - a).

• 

Note that the Exponential command is inert and should be used in combination with the RandomVariable command.

Examples

withStatistics&colon;

XRandomVariableExponentialb&colon;

PDFX&comma;u

0u<0&ExponentialE;ubbotherwise

(1)

PDFX&comma;0.5

&ExponentialE;0.5bb

(2)

MeanX

b

(3)

References

  

Evans, Merran; Hastings, Nicholas; and Peacock, Brian. Statistical Distributions. 3rd ed. Hoboken: Wiley, 2000.

  

Johnson, Norman L.; Kotz, Samuel; and Balakrishnan, N. Continuous Univariate Distributions. 2nd ed. 2 vols. Hoboken: Wiley, 1995.

  

Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.

See Also

Statistics

Statistics[Distributions]

Statistics[RandomVariable]