Statistics
Percentile
compute percentiles
Calling Sequence
Parameters
Description
Options
Examples
References
Compatibility
Percentile(A, p, ds_options)
Percentile(X, p, rv_options)
A
-
data set or Matrix data set
X
algebraic; random variable or distribution
p
algebraic; percentile
ds_options
(optional) equation(s) of the form option=value where option is one of ignore, method, or weights; specify options for computing the percentile of a data set
rv_options
(optional) equation of the form numeric=value; specifies options for computing the percentile of a random variable
The Percentile function computes the specified percentile of the specified random variable or data set.
The first parameter can be a data set (e.g., a Vector), a Matrix data set, a distribution (see Statistics[Distribution]), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable]).
The second parameter p is the percentile.
For a description of the available options, see the Statistics[Quantile] help page. Calling Percentile with percentile p is equivalent to calling Quantile with probability 0.01⁢p.
with(Statistics):
Compute the percentile of the Weibull distribution with parameters a and b.
Percentile(Weibull(a, b), 30);
a⁢ln⁡1071b
Use numeric parameters.
Percentile(Weibull(3, 5), 30);
3⁢ln⁡10715
Percentile(Weibull(3, 5), 30, numeric);
2.44104494075064
StandardError[10^5](Percentile, Weibull(3, 5), 30);
6⁢21100000007⁢ln⁡10745
StandardError[10^5](Percentile, Weibull(3, 5), 30, numeric);
0.00283364066608145
Generate a random sample of size 100000 drawn from the above distribution and compute the sample percentile.
A := Sample(Weibull(3, 5), 10^5):
Percentile(A, 30);
2.44048423337317
StandardError[10^5](Percentile, A, 30);
0.00259397498616096428
Consider the following Matrix data set.
M := Matrix([[3,1130,114694],[4,1527,127368],[3,907,88464],[2,878,96484],[4,995,128007]]);
M≔31130114694415271273683907884642878964844995128007
We compute 29th percentile of each of the columns.
Percentile(M, 29);
2.88000000000000903.52000000000095521.6000000000
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
The A parameter was updated in Maple 16.
See Also
Statistics[Computation]
Statistics[DescriptiveStatistics]
Statistics[Distributions]
Statistics[Quantile]
Statistics[RandomVariables]
Statistics[StandardError]
Download Help Document
What kind of issue would you like to report? (Optional)