FRatio - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Statistics[Distributions]

  

FRatio

  

f-ratio distribution

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

FRatio(nu, omega)

FRatioDistribution(nu, omega)

Parameters

nu

-

first degrees of freedom parameter

omega

-

second degrees of freedom parameter

Description

• 

The f-ratio distribution is a continuous probability distribution with probability density function given by:

ft=0t<0νων2tν211+νtων2+ω2Βν2&comma;ω2otherwise

  

subject to the following conditions:

0<ν,0<ω

• 

The FRatio variate is related to independent ChiSquare variates with degrees of freedom nu and omega by the formula FRatio(nu,omega) ~ (ChiSquare(nu)*omega)/(ChiSquare(omega)*nu)

• 

The FRatio variate is related to independent Laplace variates with location parameter 0 and scale parameter b by the formula FRatio(2,2) ~ abs(Laplace(0,b))/abs(Laplace(0,b))

• 

Note that the FRatio command is inert and should be used in combination with the RandomVariable command.

Examples

withStatistics&colon;

XRandomVariableFRatioν&comma;ω&colon;

PDFX&comma;u

0u<0Γν2+ω2νων2uν21Γν2Γω21+νuων2+ω2otherwise

(1)

PDFX&comma;0.5

Γ0.5000000000ν+0.5000000000ωνω0.5000000000ν0.50.5000000000ν1.Γ0.5000000000νΓ0.5000000000ω1.+0.5νω0.5000000000ν+0.5000000000ω

(2)

MeanX

undefinedω2ωω2otherwise

(3)

VarianceX

undefinedω42ω2ν+ω2νω22ω4otherwise

(4)

References

  

Evans, Merran; Hastings, Nicholas; and Peacock, Brian. Statistical Distributions. 3rd ed. Hoboken: Wiley, 2000.

  

Johnson, Norman L.; Kotz, Samuel; and Balakrishnan, N. Continuous Univariate Distributions. 2nd ed. 2 vols. Hoboken: Wiley, 1995.

  

Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.

See Also

Statistics

Statistics[Distributions]

Statistics[RandomVariable]