 torque - Maple Help

Units of Torque Description

 • Torque has the dimension force length(radius). The SI composite unit of torque is the newton meter(radius).
 • A torque is the product of a radial distance, for example, meter(radius), and a tangential force, that is, the component of the force vector tangent to the radial vector. Multiplying a unit of torque by a unit of planar angle results in a unit of energy (the energy required to rotate the body through the given angle). Examples

 > $\mathrm{convert}\left('N''m\left(\mathrm{radius}\right)','\mathrm{dimensions}','\mathrm{base}'=\mathrm{true}\right)$
 $\frac{{\mathrm{length}}{}{\mathrm{length}}{}\left({\mathrm{radius}}\right){}{\mathrm{mass}}}{{{\mathrm{time}}}^{{2}}}$ (1)
 > $\mathrm{convert}\left(1,'\mathrm{units}','N''m\left(\mathrm{radius}\right)','\mathrm{lbf}''\mathrm{ft}\left(\mathrm{radius}\right)'\right)$
 $\frac{{2500000000000000}}{{3389544870828501}}$ (2)

When the standard or natural modes for combining units are selected, Maple by default requires the correct annotation to the length unit, as in the previous example. This also prevents conversions from units of torque to units of energy; they differ only in the annotations. In the default simple mode, this is not required.

 > $\mathrm{convert}\left(1,'\mathrm{units}','N''m\left(\mathrm{radius}\right)','\mathrm{lbf}''\mathrm{ft}'\right)$
 $\frac{{2500000000000000}}{{3389544870828501}}$ (3)
 > $\mathrm{convert}\left(1,'\mathrm{units}','N''m\left(\mathrm{radius}\right)','J'\right)$
 ${1}$ (4)
 > $\mathrm{Units}\left[\mathrm{UseMode}\right]\left('\mathrm{standard}'\right)$
 ${\mathrm{simple}}$ (5)
 > $\mathrm{convert}\left(1,'\mathrm{units}','N''m\left(\mathrm{radius}\right)','\mathrm{lbf}''\mathrm{ft}'\right)$
 > $\mathrm{convert}\left(1,'\mathrm{units}','N''m\left(\mathrm{radius}\right)','J'\right)$
 > $\mathrm{convert}\left(1,'\mathrm{units}','N''m\left(\mathrm{radius}\right)','J','\mathrm{symbolic}'\right)$
 ${1}$ (6)
 > $\mathrm{with}\left(\mathrm{Units}\left[\mathrm{Standard}\right]\right):$

Notes:

 – To enter a unit in 2-D Math input, select the unit from the appropriate Units palette. If the unit you want is not there, select $\mathrm{unit}$ and then enter the unit.
 – When you edit a unit, double brackets appear around it.
 > $32.523\mathrm{Unit}\left('N''m\left(\mathrm{radius}\right)'\right)$
 ${32.523}{}⟦{N}{}{m}{}\left({\mathrm{radius}}\right)⟧$ (7)
 > $\cdot 45\mathrm{Unit}\left('\mathrm{degrees}'\right)$
 ${25.54350447}{}⟦{J}⟧$ (8)