 numtheory(deprecated)/pprimroot - Maple Help

numtheory(deprecated)

 pprimroot
 compute a pseudo primitive root Calling Sequence pprimroot(g, n) pprimroot(n) Parameters

 g - positive integer or 0 n - integer greater than 1 Description

 • Important: The numtheory package has been deprecated.  Use the superseding command NumberTheory[PseudoPrimitiveRoot] instead.
 • The function pprimroot(g, n) computes the next primitive root larger than g or, if n does not have primitive roots, computes a number which is not a root of order of any of the factors of $\mathrm{\phi }\left(n\right)$.
 • Thus (in all cases), find an integer y, such that there is no $x$ for which ${x}^{r}=y\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}\mathbf{mod}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}n$ when r is a divisor of $\mathrm{\phi }\left(n\right)$ greater than 1 and $\mathrm{igcd}\left(y,n\right)=1$.
 • If only one argument n is present then this function will return the smallest primitive root of the number n. If there is no primitive root of n then this function will return the smallest integer y, such that there is no $x$ for which ${x}^{r}=y\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}\mathbf{mod}\phantom{\rule[-0.0ex]{0.3em}{0.0ex}}n$ when r is a divisor of $\mathrm{\phi }\left(n\right)$ greater than 1 and $\mathrm{igcd}\left(y,n\right)=1$.
 • The command with(numtheory,pprimroot) allows the use of the abbreviated form of this command. Examples

Important: The numtheory package has been deprecated.  Use the superseding command NumberTheory[PseudoPrimitiveRoot] instead.

 > $\mathrm{with}\left(\mathrm{numtheory}\right):$
 > $\mathrm{pprimroot}\left(1,41\right)$
 ${6}$ (1)
 > $\mathrm{pprimroot}\left(2,8\right)$
 ${3}$ (2)
 > $\mathrm{pprimroot}\left(24\right)$
 ${5}$ (3)