missing - Maple Help

Online Help

All Products    Maple    MapleSim


Solving ODEs That Do Not Contain Either the Dependent or Independent Variable

 

Description

Examples

Description

• 

The general form of an nth order ODE that is missing the dependent variable is:

missing_y_ode := F(x,'seq(diff(y(x),x$i),i=1..n)');

missing_y_odeFx,seqⅆiⅆxiyx,i=1..n

(1)
  

where F is an arbitrary function of its arguments. The order can be reduced by introducing a new variable p(x) = diff(y(x),x). If the reduced ODE can be solved for p(x), the solution to the original ODE is determined as a quadrature.

• 

The general form of an nth order ODE that is missing the independent variable is:

missing_x_ode := F(y(x),'seq(diff(y(x),x$i),i=1..n)');

missing_x_odeFyx,seqⅆiⅆxiyx,i=1..n

(2)
  

where F is an arbitrary function of its arguments. The transformation y' =p,y''=pp',y'''=p2p''+pp'2,...

  

yields a reduction of order. If the reduced ODE can be solved for p(y), the solution to the original ODE can be given implicitly as

x = Int(1/p(y),y) + _C1;

x=1pyⅆy+_C1

(3)
  

See Murphy, "Ordinary Differential Equations and their Solutions", 1960, sections B2(1,2), and C2(1,2).

Examples

withDEtools,odeadvisor

odeadvisor

(4)

_2nd_order_missing_x_odediffyx,x,x=lnyx+1diffyx,x

_2nd_order_missing_x_odeⅆ2ⅆx2yx=lnyx+1ⅆⅆxyx

(5)

odeadvisor_2nd_order_missing_x_ode

_2nd_order,_missing_x,_2nd_order,_exact,_nonlinear,_2nd_order,_reducible,_mu_x_y1,_2nd_order,_reducible,_mu_xy

(6)

solx2dsolve_2nd_order_missing_x_ode

solx2yx=_C1,yx1_aln_a+_C1ⅆ_ax_C2=0

(7)

Explicit and implicit answers can be tested, in principle, using odetest:

mapodetest,solx2,_2nd_order_missing_x_ode

0,0

(8)

_2nd_order_missing_y_odediffyx,x,x=Fxdiffyx,x3

_2nd_order_missing_y_odeⅆ2ⅆx2yx=Fxⅆⅆxyx3

(9)

odeadvisor_2nd_order_missing_y_ode

_2nd_order,_missing_y,_2nd_order,_reducible,_mu_y_y1

(10)

soly2dsolve_2nd_order_missing_y_ode

soly2yx=1_C12Fxⅆxⅆx+_C2,yx=1_C12Fxⅆxⅆx+_C2

(11)

In the case of multiple answers it is convenient to "map" odetest as follows:

mapodetest,soly2,_2nd_order_missing_y_ode

0,0

(12)

The most general third order ODE missing x. This ODE cannot be solved to the end: its solution involves the solving of the most general second order ODE. However, its differential order can be reduced (see ?dsolve,ODESolStruc):

_3rd_order_missing_x_odediffyx,x,x,x=Fyx,diffyx,x,diffyx,x,x

_3rd_order_missing_x_odeⅆ3ⅆx3yx=Fyx,ⅆⅆxyx,ⅆ2ⅆx2yx

(13)

solx3dsolve_3rd_order_missing_x_ode

solx3yx=_a&whereⅆ2ⅆ_a2_b_a_b_a2+ⅆⅆ_a_b_a2_b_aF_a,_b_a,ⅆⅆ_a_b_a_b_a=0,_a=yx,_b_a=ⅆⅆxyx,x=1_b_aⅆ_a+_C1,yx=_a

(14)

odeadvisor_3rd_order_missing_x_ode

_3rd_order,_missing_x,_3rd_order,_with_linear_symmetries

(15)

odetestsolx3,_3rd_order_missing_x_ode

0

(16)

The most general third order ODE missing y.

_3rd_order_missing_y_odediffyx,x,x,x=Fx,diffyx,x,diffyx,x,x

_3rd_order_missing_y_odeⅆ3ⅆx3yx=Fx,ⅆⅆxyx,ⅆ2ⅆx2yx

(17)

odeadvisor_3rd_order_missing_y_ode

_3rd_order,_missing_y,_3rd_order,_with_linear_symmetries

(18)

soly3dsolve_3rd_order_missing_y_ode

soly3yx=_b_aⅆ_a+_C1&whereⅆ2ⅆ_a2_b_a=F_a,_b_a,ⅆⅆ_a_b_a,_a=x,_b_a=ⅆⅆxyx,x=_a,yx=_b_aⅆ_a+_C1

(19)

odetestsoly3,_3rd_order_missing_y_ode

0

(20)

See Also

DEtools

odeadvisor

dsolve

quadrature

missing

reducible

linear_ODEs

exact_linear

exact_nonlinear

odeadvisor,types