hyperrecursion - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


sumtools

  

hyperrecursion

  

Zeilberger-Koepf's hyperrecursion algorithm

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

hyperrecursion(U, L, z, s(n))

Parameters

U, L

-

lists of the upper and lower parameters

z

-

evaluation point

n

-

name, recurrence variable

s

-

name, recurrence function

Description

• 

This function is an implementation of Koepf's extension of Zeilberger's algorithm, calculating a (downward) recurrence equation for the sum

khypertermU,L,k

  

the sum to be taken over all integers k, with respect to n. Here, U and L denote the lists of upper and lower parameters, and z is the evaluation point. The arguments of U and L are assumed to be rational-linear with respect to n. The resulting expression equals zero.

• 

The output is a recurrence which equals zero. The recurrence is output as a function of n, the recurrence variable, and sn,sn1,....

• 

The command with(sumtools,hyperrecursion) allows the use of the abbreviated form of this command.

Examples

withsumtools:

hyperrecursionn,a,b,1,fn

n+ab+1fn1+b+n1fn

(1)

Dougall's identity

hyperrecursiona,1+a2,b,c,d,1+2abcd+n,n,a2,1+ab,1+ac,1+ad,1+a1+2abcd+n,1+a+n,1,sn

a+nacd+nabd+nabc+nsn1+ad+nac+nab+nabcd+nsn

(2)

hyperrecursiona+12,a,b,1b,n,2a+13+n,a2+1,12,2ab+33,2a+b+23,3n,2a+1+3n,a2,1,sn

b2+3nb+13n2a1+3n2a+3nsn1+3n13n23n1+b+2a3nb+2asn

(3)

See Also

sum

sumtools

sumtools[gosper]

SumTools[Hypergeometric][Zeilberger]

sumtools[hypersum]

sumtools[hyperterm]

sumtools[sumrecursion]