DirectProduct - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

DirectProduct

  

form the direct product of groups

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

DirectProduct(G1,G2,...)

Parameters

G1,G2, ...

-

group data structures

Description

• 

The DirectProduct command takes a sequence of zero or more groups as input, and returns a group data structure representing the direct product of these groups.

• 

An element of the direct product is a list [s1,s2,...] where s1 is an element from G1, s2 is from G2, and so on.

  

Therefore, the generators defined by DirectProduct are of the form [s1,e2,e3,..], where s1 is a generator from G1, e2 is the identity from G2, e3 is the identity from G3, and so on. Similarly, we have the generators [e1,s2,e3,..],[e1,e2,s3,...] and so forth.

Examples

withGroupTheory:

GDirectProductAlt4,form=fpgroup,DihedralGroup5,PSL2,3

Gs,ts2,t3,ststst,t-1s-1tst-1s-1ts×D5×PSL2,3

(1)

GroupOrderG

1440

(2)

Use DirectFactor to access the k-th direct factor of a direct product.

DirectFactorG,2

D5

(3)

Access the coordinate projections, as follows.

eRandomElementG

e1s,t,s,t,1,3,5,2,4,1,32,4

(4)

φCanonicalProjectionG,2

φ<a group morphism>

(5)

fφe

f1&comma;3&comma;5&comma;2&comma;4

(6)

finDihedralGroup5

true

(7)

GDirectProductCyclicGroup&comma;Symm3

Gg×S3

(8)

GroupOrderG

(9)

Construct the Cyclic Group of order 2.

GCustomGroup1&comma;`=``.`&comma;a&comma;ba+bmod2&comma;`=``/`&comma;aa

G < a custom group with 1 generator >

(10)

Now form the Klein 4 group.

HDirectProductG&comma;G

H < a custom group with 1 generator > × < a custom group with 1 generator >

(11)

GeneratorsH

1&comma;0&comma;0&comma;1

(12)

We verify the isomorphic permutation form of the Klein 4 group.

AreIsomorphicH&comma;Group1&comma;2&comma;3&comma;4&comma;1&comma;3&comma;2&comma;4

true

(13)

Consider elements of the DirectProduct.

ElementsDirectProductG&comma;G&comma;G

0&comma;0&comma;0&comma;0&comma;0&comma;1&comma;0&comma;1&comma;0&comma;0&comma;1&comma;1&comma;1&comma;0&comma;0&comma;1&comma;0&comma;1&comma;1&comma;1&comma;0&comma;1&comma;1&comma;1

(14)

We verify that DirectProduct is associative and commutative.

K1DirectProductG&comma;DirectProductSymmetricGroup3&comma;CyclicGroup4&comma;form=fpgroup

K1 < a custom group with 1 generator > ×S3×g0g04

(15)

K2DirectProductDirectProductG&comma;SymmetricGroup3&comma;CyclicGroup4&comma;form=fpgroup

K2 < a custom group with 1 generator > ×S3×C4

(16)

AreIsomorphicK1&comma;K2

true

(17)

K1DirectProductH&comma;SymmetricGroup3

K1 < a custom group with 1 generator > × < a custom group with 1 generator > ×S3

(18)

K2DirectProductSymmetricGroup3&comma;H

K2S3× < a custom group with 1 generator > × < a custom group with 1 generator >

(19)

AreIsomorphicK1&comma;K2

true

(20)

Compatibility

• 

The GroupTheory[DirectProduct] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

See Also

GroupTheory

GroupTheory[AreIsomorphic]

GroupTheory[CustomGroup]

GroupTheory[CyclicGroup]

GroupTheory[DihedralGroup]

GroupTheory[Elements]

GroupTheory[Group]

GroupTheory[GroupOrder]

GroupTheory[PSL]

GroupTheory[SymmetricGroup]

 


Download Help Document