Temperature - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Temperature

absolute temperature

Value

magnitude of a Temperature object

Scale

temperature scale

 

Calling Sequence

Parameters

Description

Properties of Temperature Objects

Arithmetic with Temperature Objects

Examples

Compatibility

Calling Sequence

Temperature( v, s )

Value( t )

Scale( t )

type( expr, Temperature )

Parameters

v

-

: algebraic : expression designating the temperature value

s

-

: unit : Unit expression designating the temperature scale

t

-

: Temperature : temperature object

expr

-

: anything : any Maple expression

Description

• 

The Temperature( v, s ) command returns an absolute temperature object. An absolute temperature is a measure of the amount of heat in a physical object. This is to be distinguished from a relative temperature expression, such as 20*Units:-Unit( degC ), which represents a change in temperature of an object (for example, in space or time).

• 

The value v can be an arbitrary algebraic expression not involving any units.

• 

The temperature scale s is a unit expression of the form Units:-Unit( d ), where d is one of the valid temperature units: degC, degF, K, degR, degRe or degc.

Properties of Temperature Objects

• 

A Temperature object has the type Temperature, and this may be checked by using the type command.

• 

The value (that is, the magnitude) of a Temperature object can be retrieved by using the Value function.

• 

The temperature scale (a unit expression) can be retrieved by using the Scale function.

Arithmetic with Temperature Objects

• 

The difference t1t2 of two (absolute) Temperature objects t1 and t2 evaluates to a relative temperature expression.

• 

The average t12+t22 of two (absolute) Temperature objects t1 and t2 evaluates to an absolute temperature expression.

• 

The sum tabs+trel of an absolute temperature tabs and a relative temperature trel evaluates to an absolute temperature expression.

• 

More general arithmetic with temperature objects is possible with affine combinations and null combinations of temperatures.

• 

An affine combination of temperatures is an expression of the form i=1naiti in which each ti is a Temperature object, and the coefficients ai satisfy i=1nai=1.

• 

An affine combination of absolute temperatures evaluates to a single absolute temperature. If all the temperature scales are the same, then the temperature scale of the result is the scale of the addends. However, an affine combination of temperatures with heterogeneous temperature scales evaluates to an absolute temperature whose temperature scale is the system default.

• 

A null combination of temperatures is an expression of the form i=1naiti in which each ti is a Temperature object, and the coefficients ai satisfy i=1nai=0.

• 

A null combination of absolute temperatures (such as a difference of absolute temperatures) always evaluates to a relative temperature expression.

• 

If all the Temperature objects in such a combination have the same temperature scale, then the resulting Temperature object will use that temperature scale. Otherwise, the system default temperature scale is used.

• 

Combinations of Temperature objects that are neither affine nor null can be valid as intermediate results of a computation, but they do not typically represent physical concepts. In order to indicate this, they are displayed in red.

Examples

The following examples show some basic functionality.

t1Temperature20,Units:-UnitdegC

t120°C

(1)

typet1,Temperature

true

(2)

Valuet1

20

(3)

Scalet1

°C

(4)

t2Temperature25,Units:-UnitdegC

t225°C

(5)

The difference between t2 and t1 is a null combination. The result is a relative temperature.

t2t1

5°C

(6)

typet2t1,Temperature

false

(7)

t3Temperature30,Units:-UnitdegC

t330°C

(8)

The average of t1, t2, and t3 is an affine combination. The result is an absolute temperature.

t1+t2+t33

25°C

(9)

The same holds for t1+t2t3.

t1+t2t3

15°C

(10)

t is an affine combination of t1 and t2, the value of which depends on a.

tat1+1at2

t5a+25°C

(11)

sevalt,a=sqrt3

s53+25°C

(12)

evalfs

16.33974596°C

(13)

t4Temperature50,Units:-UnitdegF

t450°F

(14)

The sum of four absolute temperatures is not a valid physical quantity. In this case, the temperature scales are different, so they are combined into the default scale, as set using the Units[UseSystem] or Units[UseUnit] commands. The default for this scale is the kelvin scale.

t1+t2+t3+t4

58885K

(15)

Dividing the sum by 4 yields the average of the four temperatures, which is a valid absolute temperature.

4

14725K

(16)

The following is a null combination.

t1t2+t3t4

15K

(17)

Compatibility

• 

The Temperature, Value and Scale commands were introduced in Maple 2015.

• 

For more information on Maple 2015 changes, see Updates in Maple 2015.

See Also

Units

Units,temperature

 


Download Help Document