FormInnerProduct - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Tensor[FormInnerProduct] - compute the inner product of two forms with respect to a given metric tensor

Calling Sequences

     FormInnerProduct(g,keyword)

     FormInnerProduct(g g1, , , keyword)

Parameters

   g         - a covariant metric tensor on a manifold or on a Lie algebra with frame name, e.g., M

   ,         - two forms (of the same degree) on M, or lists of such

,      - two forms (of the same degree) on M, or lists of such, where M is a Lie algebra with coefficients in a representation space

   g1                - a covariant metric tensor on the representation space

      keyword    - the keyword argument inversemetric = h, where h is the inverse of the metric g.

 

Description

Examples

Description

• 

 Let   and let  be the inverse metric. If  and are 1-forms, then their inner product is  For monomial -forms  and the inner product is given by

 .

This formula is extended by bi-linearity to give the general formula for the inner product of a pair of forms.

• 

In the special case of forms defined on a Lie algebra with coefficients  and in a representation, the inner product formula for monomials becomes

where  and  is the inner product on

Examples

 

First define a manifold  with local coordinates  and define a metric on .

M > 

(2.1)

 

Example 1.

Compute the inner product of two 1-forms

M > 

(2.2)
M > 

(2.3)
M > 

(2.4)

 

Example 2.

Compute the inner products of a list of monomial 2-forms.

M > 

(2.5)
M > 

(2.6)
M > 

 

Compute the inner product of a pair of 2-forms.

M > 

(2.7)
M > 

(2.8)
M > 

(2.9)

 

Example 3.

In this example we compute the inner products of forms defined on a Lie algebra with coefficients in a representation.

M > 

(2.10)
M > 

(2.11)
so4 > 

(2.12)
so4 > 

(2.13)
V > 

(2.14)
so4V > 

(2.15)
so4V > 

(2.16)
so4V > 

(2.17)

 

Compute the inner product of a pair of zero forms.

V > 

(2.18)

 

Compute the inner product of a pair of 1-forms.

V > 

(2.19)
so4V > 

(2.20)
so4V > 

(2.21)
V > 

(2.22)

 

Compute the length of a 2-form.

V > 

(2.23)
so4V > 

(2.24)

See Also

DifferentialGeometry

Tensor

ContractIndices

InverseMetric

RaiseLowerIndices

SpinorInnerProduct

TensorInnerProduct

 


Download Help Document