Stabilizer - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

Stabilizer

  

construct the stabilizer of a point, list, or set in a permutation group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

Stabilizer( alpha, G )

Stabiliser( alpha, G )

Stabilizer( L, G )

Stabiliser( L, G )

Stabilizer( S, G )

Stabiliser( S, G )

Parameters

G

-

a permutation group

alpha

-

posint; the point whose stabilizer is to be computed

L

-

list(posint); a list of points

S

-

set(posint); a set of points

Description

• 

The stabilizer of a point α under a permutation group G is the set of elements of G that fix α.  It is a subgroup of G. That is, an element g in G belongs to the stabilizer of α if αg=α.

• 

The Stabilizer( alpha, G ) command computes the stabilizer of the point alpha under the action of the permutation group G.

• 

The Stabilizer( L, G ) command, where L is a list of points in the domain of the permutation group G, computes the iterated stabilizer of L in G. This is the set of elements of G that fix each point in the list L.

• 

The Stabilizer( S, G ) command, where S is a subset of the domain of the permutation group G, computes the set-wise stabilizer of S in G. This is the set of elements g in G that map the set S to itself, but do not necessarily fix each member of S.

• 

The Stabiliser command is provided as an alias.

Examples

withGroupTheory:

GGroup1,2,4,5

G1,2,4,5

(1)

SStabilizer3,G

S4,5,1,24,5

(2)

GroupOrderS

4

(3)

GSL3,3

GSL3,3

(4)

SStabilizer1,G

S2,11,6,4,12,73,13,58,10,5,78,139,1210,11

(5)

GroupOrderS

432

(6)

IsSubgroupS,G

true

(7)

IsNormalS,G

false

(8)

SStabilizer1,7,3,11,G

S

(9)

SStabilizer1,2,G

S5,8,116,9,127,10,13,5,10,126,8,137,9,11,3,46,79,1012,13,6,78,119,1310,12

(10)

AreIsomorphicS,DirectProductSymm3,Symm3

true

(11)

SStabilizer1,2,G

S5,11,86,12,97,13,10,5,10,126,8,137,9,11,6,78,119,1310,12,3,48,119,1210,13,1,23,45,12,7,98,11,13,10

(12)

AreIsomorphicS,WreathProductSymm3,CyclicGroup2

true

(13)

Compatibility

• 

The GroupTheory[Stabilizer] command was introduced in Maple 17.

• 

For more information on Maple 17 changes, see Updates in Maple 17.

See Also

GroupTheory

GroupTheory[Group]

GroupTheory[GroupOrder]

GroupTheory[IsNormal]

GroupTheory[IsSubgroup]

GroupTheory[SL]

 


Download Help Document