Carmichael Lambda Function - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Number Theory : Carmichael Lambda Function

NumberTheory

  

CarmichaelLambda

  

Carmichael's lambda function

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

CarmichaelLambda(n)

 

lambda(n)

λn

Parameters

n

-

positive integer

Description

• 

The size of the largest cyclic group generated by gimodn is given by CarmichaelLambda(n).

• 

Alternatively, CarmichaelLambda(n) is the smallest integer i such that for all g coprime to n, gi is congruent to 1 modulo n.

• 

lambda is an alias for CarmichaelLambda.

• 

You can enter the command lambda using either the 1-D or 2-D calling sequence. For example, lambda(8) is equivalent to λ8.

Examples

withNumberTheory:

seqTotienti,i=1..7

1,1,2,2,4,2,6

(1)

seqCarmichaelLambdai,i=1..7

1,1,2,2,4,2,6

(2)

CarmichaelLambda8

2

(3)

Totient8

4

(4)

λ21

6

(5)

Totient21

12

(6)

CarmichaelLambdak

CarmichaelLambdak

(7)

Carmichael's theorem states that gλn is congruent to 1 modulo n if g and n are coprime.

dCarmichaelLambda112

d12

(8)

seq`if`igcdg,112=1,gdmod112,NULL,g=1..111

1

(9)

Compatibility

• 

The NumberTheory[CarmichaelLambda] command was introduced in Maple 2016.

• 

For more information on Maple 2016 changes, see Updates in Maple 2016.

See Also

NumberTheory

NumberTheory[Totient]