Plot - Maple Help

PolyhedralSets

 Plot
 plot a polyhedral set

 Calling Sequence Plot(polyset) Plot(polyset, options)

Parameters

 polyset - polyhedral set or list of polyhedral sets options - (optional) list of options for formatting the plot.

Description

 • Plots the given polyhedral set(s) in their coordinate space.  The sets must all have either two or three coordinates.
 • The options parameter is a sequence of name = value pairs.  When there are two coordinates, the plot/options can be specified, and the plot3d/options specified when there are three coordinates.
 • The style of the faces, edges, vertices and set interiors can be controlled individually by specifying faceoptions = [name = value], edgeoptions = [name = value], vertexoptions = [name = value], or interioroptions = [name = value], where the lists are formed of the valid options from either plot/options or plot3d/options.  Style options specified in options will be applied to the face of highest dimension in polyset.  By default, the faces, edges, vertices and interior are all drawn explicitly to distinguish between bounded and unbounded sets.
 • If polyset is a list of polyhedral sets, the above options can be given as a list in the form of e.g. faceoptions = [ color = [color1, color2,...], thickness = [10, 12, ...], ...] to style the sets individually.

Examples

 > $\mathrm{with}\left(\mathrm{PolyhedralSets}\right):$

The cube plotted with the default style

 > $c≔\mathrm{ExampleSets}:-\mathrm{Cube}\left(\right):$$\mathrm{Plot}\left(c\right)$

The faces of a set can be styled independently using the standard plot options

 > $\mathrm{Plot}\left(c,\mathrm{faceoptions}=\left[\mathrm{color}="purple",\mathrm{transparency}=0.5\right],\mathrm{edgeoptions}=\left[\mathrm{color}="black"\right],\mathrm{vertexoptions}=\left[\mathrm{color}="red",\mathrm{symbolsize}=30\right]\right)$

The following set has two faces, one edge and no vertices and extends to infinity.

 > $p≔\mathrm{PolyhedralSet}\left(\left[y\le 1-3z,y\le -\frac{1}{3}-\frac{1}{3}z\right],\left[x,y,z\right]\right):$$\mathrm{IsBounded}\left(p\right)$
 ${\mathrm{false}}$ (1)

The interior of the set is rendered transparently by default.

 > $\mathrm{Plot}\left(p\right)$

An empty set generates an empty plot

 > $\mathrm{Plot}\left(\mathrm{ExampleSets}:-\mathrm{EmptySet}\left(\left[x,y,z\right]\right)\right)$

Lists of plots will be drawn with different colors automatically

 > $\mathrm{pss}≔\mathrm{SplitIntoSimplices}\left(c\right)$
 ${\mathrm{pss}}{≔}\left[{{}\begin{array}{lll}{\mathrm{Coordinates}}& {:}& \left[{{x}}_{{1}}{,}{{x}}_{{2}}{,}{{x}}_{{3}}\right]\\ {\mathrm{Relations}}& {:}& \left[{-}{{x}}_{{3}}{\le }{1}{,}{-}{{x}}_{{2}}{+}{{x}}_{{3}}{\le }{0}{,}{-}{{x}}_{{1}}{+}{{x}}_{{2}}{\le }{0}{,}{{x}}_{{1}}{\le }{1}\right]\end{array}{,}{{}\begin{array}{lll}{\mathrm{Coordinates}}& {:}& \left[{{x}}_{{1}}{,}{{x}}_{{2}}{,}{{x}}_{{3}}\right]\\ {\mathrm{Relations}}& {:}& \left[{-}{{x}}_{{2}}{\le }{1}{,}{{x}}_{{2}}{-}{{x}}_{{3}}{\le }{0}{,}{-}{{x}}_{{1}}{+}{{x}}_{{3}}{\le }{0}{,}{{x}}_{{1}}{\le }{1}\right]\end{array}{,}{{}\begin{array}{lll}{\mathrm{Coordinates}}& {:}& \left[{{x}}_{{1}}{,}{{x}}_{{2}}{,}{{x}}_{{3}}\right]\\ {\mathrm{Relations}}& {:}& \left[{-}{{x}}_{{3}}{\le }{1}{,}{{x}}_{{2}}{\le }{1}{,}{-}{{x}}_{{1}}{+}{{x}}_{{3}}{\le }{0}{,}{{x}}_{{1}}{-}{{x}}_{{2}}{\le }{0}\right]\end{array}{,}{{}\begin{array}{lll}{\mathrm{Coordinates}}& {:}& \left[{{x}}_{{1}}{,}{{x}}_{{2}}{,}{{x}}_{{3}}\right]\\ {\mathrm{Relations}}& {:}& \left[{-}{{x}}_{{2}}{+}{{x}}_{{3}}{\le }{0}{,}{{x}}_{{2}}{\le }{1}{,}{-}{{x}}_{{1}}{\le }{1}{,}{{x}}_{{1}}{-}{{x}}_{{3}}{\le }{0}\right]\end{array}{,}{{}\begin{array}{lll}{\mathrm{Coordinates}}& {:}& \left[{{x}}_{{1}}{,}{{x}}_{{2}}{,}{{x}}_{{3}}\right]\\ {\mathrm{Relations}}& {:}& \left[{{x}}_{{3}}{\le }{1}{,}{-}{{x}}_{{2}}{\le }{1}{,}{-}{{x}}_{{1}}{+}{{x}}_{{2}}{\le }{0}{,}{{x}}_{{1}}{-}{{x}}_{{3}}{\le }{0}\right]\end{array}{,}{{}\begin{array}{lll}{\mathrm{Coordinates}}& {:}& \left[{{x}}_{{1}}{,}{{x}}_{{2}}{,}{{x}}_{{3}}\right]\\ {\mathrm{Relations}}& {:}& \left[{{x}}_{{3}}{\le }{1}{,}{{x}}_{{2}}{-}{{x}}_{{3}}{\le }{0}{,}{-}{{x}}_{{1}}{\le }{1}{,}{{x}}_{{1}}{-}{{x}}_{{2}}{\le }{0}\right]\end{array}\right]$ (2)
 > $\mathrm{Plot}\left(\mathrm{pss},\mathrm{transparency}=0.3\right)$

Compatibility

 • The PolyhedralSets[Plot] command was introduced in Maple 2015.