FixedPointIteration - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Student[NumericalAnalysis]

  

FixedPointIteration

  

numerically approximate the real roots of an expression using the fixed point iteration method

 

Calling Sequence

Parameters

Options

Description

Notes

Examples

Calling Sequence

FixedPointIteration(f, x=a, opts)

FixedPointIteration(f, a, opts)

Parameters

f

-

algebraic; expression in the variable x representing a continuous function

x

-

name; the independent variable of f

a

-

numeric; the initial approximate root

opts

-

(optional) equation(s) of the form keyword=value, where keyword is one of fixedpointiterator, functionoptions, lineoptions, maxiterations, output, pointoptions, showfunction, showlines, showpoints, stoppingcriterion, tickmarks, caption, tolerance, verticallineoptions, view; the options for approximating the roots of f

Options

• 

fixedpointiterator = algebraic (optional)

  

The expression on the right-hand side will be used to generate the fixed-point iteration sequence. If this option is specified, the first argument, f, must be omitted. See the Notes section for more details.

• 

functionoptions = list

  

A list of options for the plot of the expression f. By default, f is plotted as a solid red line.

• 

lineoptions = list

  

A list of options for the lines on the plot. By default the lines are dotted blue.

• 

maxiterations = posint

  

The maximum number of iterations to perform. The default value of maxiterations depends on which type of output is chosen:

– 

output = value: default maxiterations = 100

– 

output = sequence: default maxiterations = 10

– 

output = information: default maxiterations = 10

– 

output = plot: default maxiterations = 5

– 

output = animation: default maxiterations = 10

• 

output = value, sequence, plot, animation, or information

  

The return value of the function. The default is value.

– 

output = value returns the final numerical approximation of the root.

– 

output = sequence returns an expression sequence pk, k=0..n that converges to the exact root for a sufficiently well-behaved function and initial approximation.

– 

output = plot returns a plot of f with each iterative approximation shown and the relevant information about the numerical approximation displayed in the caption of the plot.

– 

output = animation returns an animation showing the iterations of the root approximation process.

– 

output = information returns detailed information about the iterative approximations of the root of f.

• 

plotoptions = list

  

The final plot options when output = plot or output = animation.

• 

pointoptions = list

  

A list of options for the points on the plot. By default, the points are plotted as green circles.

• 

showfunction = truefalse

  

Whether to display f on the plot or not.  By default, this option is set to true.

• 

showlines = truefalse

  

Whether to display lines that accentuate each approximate iteration when output = plot. By default, this option is set to true.

• 

showpoints = truefalse

  

Whether to display the points at each approximate iteration on the plot when output = plot. By default, this option is set to true.

• 

stoppingcriterion = relative, absolute, or function_value

  

The criterion that the approximations must meet before discontinuing the iterations. The following describes each criterion:

– 

relative : pnpn1pn < tolerance

– 

absolute : pnpn1 < tolerance

– 

function_value : fpn < tolerance

  

By default, stoppingcriterion = relative.

• 

tickmarks = list

  

The tickmarks when output = plot or output = animation. By default, tickmarks are placed at the initial and final approximations with the labels p0 (or a and b for two initial approximates) and pn, where n is the total number of iterations used to reach the final approximation. See plot/tickmarks for more detail on specifying tickmarks.

• 

caption = string

  

A caption for the plot. The default caption contains general information concerning the approximation. For more information about specifying a caption, see plot/typesetting.

• 

tolerance = positive

  

The error tolerance of the approximation. The default value is 110000.

• 

verticallineoptions = list

  

A list of options for the vertical lines on the plot. By default, the lines are dashed and blue.

• 

view = [realcons..realcons, realcons..realcons]

  

The plotview of the plot when output = plot.  See plot/options for more information.

Description

• 

The FixedPointIteration command numerically approximates the roots of an algebraic function, f by converting the problem to a fixed-point problem.

• 

Given an expression f and an initial approximate a, the FixedPointIteration command computes a sequence pk, k=0..n, of approximations to a root of f, where n is the number of iterations taken to reach a stopping criterion.

• 

The first argument f may be substituted with an option of the form fixedpointiterator = fpexpr. See Notes.

• 

The FixedPointIteration command is a shortcut for calling the Roots command with the method=fixedpointiteration option.

Notes

• 

This procedure first converts the problem of finding a root to the equation fx=0 to a problem of finding a fixed point for the function gx, where gx=xfx and fx is specified by f and x.

• 

The user can specify a custom iterator function gx by omitting the first argument f and supplying the fixedpointiterator = g option. The right-hand side expression g specifies a function gx, and this procedure will aim to find a root to fx = xgx=0 by way of solving the fixed-point problem gx=x.

  

When output = plot or output = animation is specified, both the function fx and the fixed-point iterator function gx will be plotted and correspondingly labelled.

  

The tolerance option, when stoppingcriterion = function_value, applies to the function fx in the root-finding form of the problem.

Examples

withStudentNumericalAnalysis&colon;

fxcosx&colon;

FixedPointIterationf&comma;x=1.0&comma;tolerance=102

0.7414250866

(1)

FixedPointIterationf&comma;x=1.0&comma;tolerance=102&comma;output=sequence&comma;maxiterations=20

1.0,0.5403023059,0.8575532158,0.6542897905,0.7934803587,0.7013687737,0.7639596829,0.7221024250,0.7504177618,0.7314040424,0.7442373549,0.7356047404,0.7414250866

(2)

FixedPointIterationf&comma;x=1.0&comma;tolerance=102&comma;output=plot&comma;stoppingcriterion=function_value&comma;maxiterations=20

FixedPointIterationf&comma;x=1.0&comma;tolerance=103&comma;output=animation&comma;stoppingcriterion=absolute&comma;maxiterations=20

To find a root of fx=x22x3 using the fixed-point iterator function gx=2x+3, use the fixedpointiterator = g option.

g2x+312&colon;

FixedPointIterationfixedpointiterator=g&comma;x=4.0&comma;tolerance=102

3.011440019

(3)

FixedPointIterationfixedpointiterator=g&comma;x=4.0&comma;tolerance=102&comma;output=sequence

4.0,3.316624790,3.103747667,3.034385495,3.011440019

(4)

FixedPointIterationfixedpointiterator=g&comma;x=4.0&comma;output=plot&comma;stoppingcriterion=function_value&comma;maxiterations=10

FixedPointIterationfixedpointiterator=g&comma;x=4.0&comma;output=animation&comma;stoppingcriterion=absolute

See Also

Student[NumericalAnalysis]

Student[NumericalAnalysis][Roots]

Student[NumericalAnalysis][VisualizationOverview]