pAverage Value of a Function in Cylindrical Coordinates
Description
In the cylindrical coordinate system, where the point x,y,z has coordinates r,θ,z, and
r,θ are the polar coordinates of x,y, determine the average value of a function.
Average Value of a Function in Cylindrical Coordinates
Integrand
z
Region: z1r,θ≤z≤z2r,θ,r1θ≤r≤r2θ,a≤θ≤b
z1r,θ
r
z2r,θ
1
r1θ
0
r2θ
a
b
2 π
2⁢π
Inert Integral: dz dr dθ
(Note automatic insertion of Jacobian.)
StudentMultivariateCalculusFunctionAverage,z=..,r=..,θ=..,coordinates=cylindricalr,θ,z,output=integral
∫02⁢π∫01∫r1z⁢rⅆzⅆrⅆθ∫02⁢π∫01∫r1rⅆzⅆrⅆθ
Value
StudentMultivariateCalculusFunctionAverage,z=..,r=..,θ=..,coordinates=cylindricalr,θ,z
34
Commands Used
Student[MultivariateCalculus][FunctionAverage]
See Also
Student[MultivariateCalculus], Student[MultivariateCalculus][MultiInt]
Download Help Document
What kind of issue would you like to report? (Optional)