GetCoordinateParameters - Maple Help

Home : Support : Online Help : Mathematics : Vector Calculus : GetCoordinateParameters

VectorCalculus

 GetCoordinateParameters
 get coordinate system parameters
 SetCoordinateParameters
 set coordinate system parameters

 Calling Sequence GetCoordinateParameters() SetCoordinateParameters(a, b, c)

Parameters

 a - algebraic; specify the first coordinate system parameter (default=1) b - (optional) algebraic; specify the second coordinate system parameter (default=1/2) c - (optional) algebraic; specify the third coordinate system parameter (default=1/3)

Description

 • Several of the coordinate systems provided with the VectorCalculus package include up to 3 parameters in their definitions.  In the documentation for this package, these parameters are given the names a, b and c, as needed.
 • The default values for these parameters are $a=1$, $b=\frac{1}{2}$, and $c=\frac{1}{3}$.
 • These parameters can be queried and set by using the GetCoordinateParameters and SetCoordinateParameters commands.
 • The GetCoordinateParameters command returns an expression sequence containing the current values of a, b, and c.
 • The SetCoordinateParameters command takes 1, 2, or 3 arguments, and sets the values of a, a and b, or a, b, and c respectively.

Examples

 > $\mathrm{with}\left(\mathrm{VectorCalculus}\right):$
 > $\mathrm{SetCoordinateParameters}\left(\mathrm{\alpha },\mathrm{\beta }\right)$
 > $\mathrm{SetCoordinates}\left(\mathrm{conical}\left[u,v,w\right]\right)$
 ${{\mathrm{conical}}}_{{u}{,}{v}{,}{w}}$ (1)
 > $V≔⟨1,2,3⟩$
 ${V}{≔}\left({1}\right){{e}}_{{u}}{+}\left({2}\right){{e}}_{{v}}{+}\left({3}\right){{e}}_{{w}}$ (2)
 > $\mathrm{MapToBasis}\left(V,\mathrm{cartesian}\right)$
 $\left(\frac{{6}}{{\mathrm{\alpha }}{}{\mathrm{\beta }}}\right){{e}}_{{x}}{+}\left(\frac{\sqrt{\frac{\left({-}{{\mathrm{\beta }}}^{{2}}{+}{4}\right){}\left({{\mathrm{\beta }}}^{{2}}{-}{9}\right)}{{{\mathrm{\alpha }}}^{{2}}{-}{{\mathrm{\beta }}}^{{2}}}}}{{\mathrm{\beta }}}\right){{e}}_{{y}}{+}\left(\frac{\sqrt{\frac{\left({{\mathrm{\alpha }}}^{{2}}{-}{4}\right){}\left({{\mathrm{\alpha }}}^{{2}}{-}{9}\right)}{{{\mathrm{\alpha }}}^{{2}}{-}{{\mathrm{\beta }}}^{{2}}}}}{{\mathrm{\alpha }}}\right){{e}}_{{z}}$ (3)
 > $\mathrm{GetCoordinateParameters}\left(\right)$
 ${\mathrm{\alpha }}{,}{\mathrm{\beta }}{,}\frac{{1}}{{3}}$ (4)